
1

Programming in C

(Chapters 11-13)

1

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

Machine Architecture

Devices

Micro-architecture

Logic Circuits

Translation from C to
Assembly

Scope of variables
Function calls
Recursion
Pointers & Arrays
Data Structures
Memory Allocation

How do user programs
get executed?

2

2

Programming Languages
•Assembly language is low-level.
• It exposes machine instructions and details of the ISA to the

programmer.
• It is ISA-specific.
• It is useful when the programmer needs fine-grained control

of instruction flow and memory usage.

•A high-level language provides a computational abstraction
that is machine-independent.

• Symbolic names (variables) instead of registers and memory
locations.

• High-level operators: multiply, divide, shift, ...

3

Why use a High-Level Language? 1

•Expressiveness: say more with less effort, closer to human-level thinking

C statement

a = b * c;

Equivalent LC-3 code

AND R2,R2,#0

AND R3,R3,#0

LDR R0,R5,#-1 ; b
BRz L3

BRp L1
NOT R3,R3

NOT R0,R0

ADD R0,R0,#1
L1 LDR R1,R5,#-2 ; c

BRz L5

BRp L2
NOT R3,R3

NOT R1,R1

ADD R1,R1,#1
L2 ADD R2,R2,R0 ; b * c

ADD R1,R1,#-1

BRp L2
ADD R3,R3,#0

BRp L3
NOT R2,R2

ADD R2,R2,#1

L3 STR R2,R5,#0 ; store to a

•Both multiply two values together –
•which is easier to understand?

4

3

Machine
Language
(binary)

Assembly
Language

C Java Python Haskell What’s
Next??

The Evolution of Programming

Simula/C++/etc

5

A picture purportedly of Dennis Ritchie and Brian Kernighan two of the
key developers of C with a PDP-11 minicomputer

History: 1969 AT&T Bell Labs drops out of MULTICS project.
>Ken Thompson develops UNICS
>Ken Thompson writes interpreted language: B
>Dennis Ritchie and Brian Kernighan improve on "B" and called it "C”

6

4

Programming in C == Working without a net

A C program is like a fast dance on a newly waxed dance
floor by people carrying razors." —Waldi Ravens.

7

Compilation vs. Interpretation
•Different ways of translating high-level language
•Interpretation

• interpreter = program that executes program statements
§ Called a Virtual Machine

• generally one line/command at a time
• limited processing
• easy to debug, make changes, view intermediate results
• languages: BASIC, LISP, Perl, Java, Matlab, Python, C-shell

•Compilation
• translates statements into machine language

§ does not execute, but creates executable program

• performs optimization over multiple statements
• change requires recompilation

§ can be harder to debug, since executed code may be different

• languages: C, C++, Fortran, Pascal

8

5

Compilation vs. Interpretation
•Consider the following algorithm:

• Get W from the keyboard.
• X = W + W
• Y = X + X

• Z = Y + Y
• Print Z to screen.

•If interpreting, how many arithmetic operations occur?

•If compiling, how many arith operations needed ?
•In a compiler we can analyze the entire program and possibly
reduce the number of operations. Can we simplify the above
algorithm to use a single arithmetic operation?

9

C vs Java

C Code

Assembly
Code

Machine
Code

Java Code

Java
bytecode

Java Virtual
Machine

Machine
Code

10

6

Compiling a C Program
•Entire mechanism is usually called
the “compiler”
•Preprocessor

• macro substitution
• conditional compilation
• “source-level” transformations

§ output is still C

•Compiler
• generates object file

§ machine instructions

•Linker
• combine object files

(including libraries)
into executable image

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

11

Compiler
•Source Code Analysis….you will learn this in Foundations

• “front end”
• parses programs to identify its pieces

§ variables, expressions, statements, functions, etc.

• depends on language (not on target machine)
•Code Generation… we will cover it implicitly in this course

• “back end”: generates machine code from analyzed source
• may optimize machine code to make it run more efficiently
• very dependent on target machine
• We will play the role of the code generation component as we discuss

how different C concepts are implemented in LC3
§ This is what the compiler backend does

•Symbol Table
• map between symbolic names and items
• like assembler, but more kinds of information

12

7

A Simple C Program
#include <stdio.h>
#define STOP 0
int scale=10;
int square(){ /* function square */{

int x,y; /* two local variables */
x = scale*scale;
return(x);}

/* Function: main */
/* Description: gets value and squares it */
main()
{ /* variable declarations */

int number, value, temp; /* three integer local
variables */

/* prompt user for input */
printf("Enter a positive number: ");
scanf("%d", &value); /* read into value */
/* scale input and print */
number = value*square();
printf(”number is %d\n", number);

}

13

Preprocessor Directives
•#include <stdio.h>

• Before compiling, copy contents of header file (stdio.h)
into source code.

• Header files typically contain descriptions of functions and
variables needed by the program.

§ no restrictions -- could be any C source code

•#define STOP 0
• Before compiling, replace all instances of the string

"STOP" with the string "0"
• Called a macro
• Used for values that won't change during execution,

but might change if the program is reused. (Must recompile.)

14

8

Symbol Table
•Like assembler, compiler needs to know information
associated with identifiers
• in assembler, all identifiers were labels

and information is address

•Compiler keeps more information
• Name (identifier)
• Type
• Location in memory
• Scope

Name Type Offset Scope

scale
number
value
temp
x
y

int
int
int
int
int
int

0
0
-1
-2
0
-1

global
main
main
main
square
square

15

Loader..
•The Loader loads the executable image, generated by linker,
into the memory and executes the program

•Loader is part of O/S

•What about the addresses ??
• Program starts at x3000, refers to memory at x3100, etc.
• Does this mean the loader loads exactly into x3000 ??
• Concept of user space

§ Memory management system does the actual mapping from user space to physical addresses

16

9

Linking
•Linking is the process whereby a program that you
wrote is combined with all of the libraries it calls to
produce the final executable program.

•To do this the linker needs to find the code for every
function that is called in the program and link them
together appropriately to produce the final executable
binary file.

• You can get a taste of linking if implemented the calculator
program as one large assembly program

18

Makefiles
•The make tool was developed to simplify and automate the
process of multi-file development.

•The makefile specifies dependencies between various
source files in your project and indicates how they should be
compiled to produce the final result.

•See the following URL for a simple introduction to Makefiles
• http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

•You will have to create and use makefiles
• So go through the tutorial

19

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

10

Static vs Dynamic Linking
•For most modern OSes, Windows, MacOSX, Linux etc.,
commonly used functions, printf, rand, open, close etc. are
stored in dynamically linked libraries. On Windows these have
the suffix .DLL

•The idea here is that instead of copying the function code into
every executable program that uses them at compile time the
function is instead dynamically linked at run time.

•This saves space, makes for smaller executables and allows the
OS maker to change the implementation of those functions in
future releases without requiring programmers to recompile or
relink their code.

• However, it does raise the prospect of changing the
implementation in such a way that it breaks programs that used to
run just fine before you changed the underlying library.

• Also a great target for worms and viruses.

20

Multi File development
•C offers some basic facilities to support multi-file development.
•It is common to write a set of functions that implement a piece of
functionality in one C (.c) file and then expose that functionality to
other C files that may want to use it as a header file (.h)

• See for example stdio.h, stdlib.h, string.h etc.
•In order to support this pattern the C compilers support partial
compilation where a file that does not have a main routine can be
compiled down to an object file containing the code for the
routines using the –c flag

• gcc –c my_functions.c
•The resulting object (.o, .obj) files can, optionally, be archived
together into a library, (.a, .lib) that your program can then be
linked against.

21

11

Multiple Files

foo.c bar.c baz.c

Linker

a.out

Advantage:
For maintenance only
have to recompile
affected files

22

