
1

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2014 Narahari

Computer Architecture
Introduction
(Chapter 4,5)

1

2

Putting it all together: Microarchitecture and ISA

• We now have a collection of combinational and sequential
logic devices & methodology for designing these circuits

• Digital logic circuits used in communications/networking equipment,
computers, consumer electronics, …..

• Our focus is building a computer using these devices

• We next need to combine these devices to accomplish our
goal of building a central processing unit of a computer

• To do this we need a master plan: i.e., a model of a
computer – von Neuman architetures

• Chapters 4-5

2

2

3

Levels of abstraction – Hardware stack

Natural Language

Algorithm

Program

Machine Architecture/ISA

Devices

Micro-architecture

Logic Circuits

To understand these two
levels we will need to jump

Between the two levels:
we need an idea of ISA to

discuss/design microarchitecture

3

4

Important Note: Building circuits using ‘standard’
devices

• now that we have a set of combinational devices, we can
build/design circuits using these devices from a “library”

• Adders, Decoders, Multiplexers, Flip Flops, Registers, Memory…..
• You do not have to keep going to the transistor or gate level when

designing a ‘system’
•Analogous to using library functions (or functions you have
implemented earlier) to write your program

• Work on formulating a solution/design by using ‘high level’
abstractions/devices

• Example: Need to store a value, think ‘register’ or ‘memory’
instead of ‘RS latch’

•

4

3

5

History of the Stored Program Computer
•1943: ENIAC

• Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 1939?)

• Hard-wired program -- settings of dials and switches.
•1944: Beginnings of EDVAC

• among other improvements, includes program stored in memory and binary
•1945: John von Neumann

• wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

•The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

• a memory, containing instructions and data
• a processing unit, for performing arithmetic and logical operations
• a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm

5

6

Historical Perspective
• ENIAC built during World War II was the first general

purpose computer: Eckert and Mauchly, U.Penn, ~1943
• Used for computing artillery firing tables
• About 1500 square ft.; over 30 tons
• Used 18,000 vacuum tubes, decimal representation
• Performed 1900 additions per second

6

4

7

EDVAC, 1944-49: Electronic Discrete Variable
Computer

•‘successor’ to ENIAC – same designers Eckert & Mauchly, Penn
• von Neumann collaborated with this group to write his report

• Program stored in memory
• Binary digital representation

•Draft report by von Neumann…
came to be known as
‘von Neumann model’ !!!

(In reality: it was a collaboration!)

John	von	Neumann	and	EDVAC
7

8

Von Neumann Model
•The basic structure in the von Neumann
architecture model

• A memory containing instructions and data
• A processing unit for performing arithmetic &

logical operations
• A control unit for interpreting instructions

•The central idea is:
• the program and data are both stored as

sequences of bits in the computer's memory, and
• the program is executed, one instruction at a

time, under the direction of the control unit.

8

5

9

The von Neumann Model
Memory

Processing Unit
Input Output

MAR MDR

ALU TEMP

Control Unit
PC IR

(keyboard) (monitor)

Memory: holds both data and programs
Processing unit: carries out the instructions
Control unit: sequences and interprets instructions
Input: external information/data into the memory
Output: produces results for the user

9

10

Von Neuman Model: Memory
•2N x m array of stored bits
•Address and Addressability (contents)

• unique (N-bit) identifier of location
• m-bit value stored in location

•Interacting with memory
•(operations):
•LOAD (READ)
o read a value from a memory location

•STORE (WRITE)
o write a value to a memory location

••
•

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

10

6

11

Interface to Memory
• How does processing unit get data to/from

memory?
• MAR: Memory Address Register
• MDR: Memory Data Register

• Also called MBR: mem. Buffer reg.
• To LOAD a location (A):

1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

• To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
3. Send a “write” signal to the memory, i.e., enable Write

memory

MAR MDR

11

12

Memory Access..Reality.

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

12

7

13

Will return to memory hierarchy later in the
course

•For now, keep it simple: one memory device
• N bit address space, m bits in each location

memory

MAR MDR

13

14

Von Neumann Model: Processing Unit
• Processing Unit- does the actual work!

o (At a minimum) has Arithmetic & Logic Unit (ALU) and General Purpose
Registers (GPRs).

oThe number of bits a basic Processing Unit operation can handle is called the
WORD SIZE of the machine.

oToday: can consist of many units, each specializing in some complex functions
• ALU

oPerforms basic operations: add, subtract, and, not, etc.
oGenerally operates on whole words of data.

– Some can also operate on subsets of words (eg. single bits or bytes)
oLC3 does ADD, AND, NOT
oYou have seen a design of a simple ALU (to Add/Subtract)!

• Registers:
oFast “on-board” storage for a small number of words.
o Invaluable for intermediate data storage while processing
oClose to the ALU (much faster access than RAM)
oLC3 has 8 general purpose registers R0,R1,…,R7.

14

8

15

Von Neumann Model: Input and Output
•Devices for getting data into and out of computer memory -
peripherals

•Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

• LC-3 supports keyboard (input) and monitor (output)
• keyboard: data register (KBDR) and status register (KBSR)
• monitor: data register (DDR) and status register (DSR)

•Some devices provide both input and output
• disk, network

•Program that controls access to a device is
usually called a device driver.

INPUT
Keyboard
Mouse
Scanner
D isk

OUTPUT
Monitor
Printer
LED
Disk

15

16

Von Neumann Model: Control Unit
•Orchestrates execution of the program

•Instruction Register (IR)
•contains the current instruction.

•Program Counter (PC)
•contains the address of the next instruction to be executed.

Pointer to next instruction
•Control unit:

• reads an instruction from memory and stores it in IR
o the instruction’s address is in the PC

• interprets the instruction, generating signals
that tell the other components what to do

o an instruction may take many machine cycles to complete
o The interpretation of an instruction goes through several steps…can be specified by Finite

State Machine

Control Unit
PCIR

16

9

17

What is an Instruction
•The instruction is the fundamental unit of work.
•Specifies two things:

• opcode: operation to be performed
• operands: data/locations to be used for operation

•An instruction is encoded as a sequence of bits.
(Just like data!)

• Often, but not always, instructions have a fixed length (16,32,..),
• Control unit interprets instruction:

o generates sequence of control signals to carry out operation.
• Operation is either executed completely, or not at all.

•A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

17

18

ISA
• The ISA specifies all the information about the computer

that the software needs to be aware of.
• Who uses an ISA?
• What is specified?
• How big an ISA

• Reduced Instruction set (RISC)
• Complex Instruction set (CISC)

• ISA serves as the interface b/w hardware and software
• Software needs to know instructions in the hardware
• Hardware needs to know instructions to be implemented in the

hardware by the Mircoarchitecture

18

10

19

Instruction Set Architecture
•ISA = All of the programmer-visible components and
operations of the computer

• memory organization
o address space -- how many locations can be addressed?
o addressibility -- how many bits per location?

• register set
o how many? what size? how are they used?

• instruction set
o opcodes
o data types
o addressing modes

•ISA provides all information needed for someone that wants to write a
program in machine language
or translate from a high-level language to machine language

19

20

What is the Hardware/Software Interface ?

instruction set

software

hardware

20

11

Computer Architecture is ...

Instruction Set Architecture

Organization

Hardware

21

22

ISA: Types of Instruction
• 1. Operate Instructions

• process data (addition, logical operations, etc.)
• 2. Data Movement Instructions …

• move data between memory locations and registers.
• 3. Control Instructions …

• change the sequence of execution of instructions in the stored
program.
oThe default is sequential execution: the PC is incremented by 1 at

the start of every Fetch, in preparation for the next one.
oControl instructions set the PC to a new value during the Execute

phase, so the next instruction comes from a different place in the
program.

oThis allows us to build control structures such as loops and
branches.

22

12

23

Encoding the operations/opcode

• N-bit word used by processor (addressability)
•Use some of these bits to encode the different instructions

•Example: We have 32-bit processor
• We have 50 instructions we need to encode
• We need 6 bits to encode 50 different binary strings

• Opcode is specified using these 6 bits

• In reality: could get more ‘creative’ than just sticking to these
6 bits…..

23

24

Example: LC-3 ADD Instruction
•LC-3 has 16-bit instructions.

• Each instruction has a four-bit opcode, bits [15:12].
•LC-3 has eight registers (R0-R7) for temporary storage.

• Sources and destination of ADD are registers.

Semantics: “Add the contents of R2 to the contents of R6,
and store the result in R6.”

24

13

25

Example: LC-3 LDR Instruction
•Load instruction -- reads data from memory
•Base + offset mode:

• add offset to base register -- result is memory address
• load from memory address into destination register

“Semantics: Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

25

26

How do instructions get executed ?
Instruction Cycle - overview

• The Control Unit orchestrates the complete execution of each
instruction:

• At its heart is a Finite State Machine that sets up the state of the logic
circuits according to each instruction.

• This process is governed by the system clock - the FSM goes through one
transition (“machine cycle”) for each tick of the clock.

• 1 Ghz (109) clock frequency = 1 nanosecond clock cycle

26

14

27

CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

27

28

Instruction Cycle - overview

Six phases of the complete Instruction Cycle

• Fetch: load IR with instruction from memory

• Decode: determine action to take (set up inputs for ALU, RAM,
etc.)

• Evaluate address: compute memory address of operands, if any

• Fetch operands: read operands from memory or registers

• Execute: carry out instruction

• Store results: write result to destination (register or memory)

28

15

29

The Instruction Processing Cycle

Decode instruction

Evaluate address

Fetch operands from memory

Execute operation

Store result

Fetch instruction from memory
load IR with instruction

from memory

determine instruction &
actions to take (set up inputs etc.)

compute memory address
of operands if any

read operands from
memory or registers

carry out instruction

write results to
register or memory

29

30

The Von Neumann “Loop”
• A Von Neumann Processor essentially does this

• Fetch instruction at PC
• Decode instruction (i.e., convert to control signals)
• Execute instruction (read inputs, operate, write output)
• Update PC
• Repeat
• Example shown was for LC3, but all processors have similar

instruction processing cycle
Critical requirement

• Each iteration of this loop must appear atomic (all or nothing)
• Key word from programmer perspective? Atomic

o Maintains sanity

• Key word from hardware perspective? Appear
o Enables lot of cool performance tricks

30

16

31

What actions take place in each step….
•Next, take a closer look at the “control” signals needed and
the actions that take place at each step of the instruction cycle

• We can then go into the actions/steps to implement each instruction

•Important: we need this information (control signals) when we
design/implement a processor!

• Next topic we will go into detail on how the processor datapath and
control is implemented, and some sequential logic devices.

31

32

Instruction Processing Step 1: FETCH
•Load next instruction (at address stored in PC) from
memory into Instruction Register (IR).
• 1.Copy contents of PC into MAR: MAR ← (PC)
• 2.Send “read” signal to mem and read: MDR ←
(MAR)
• 3.Copy contents of MDR into IR: IR ← MDR
• 4. increment PC, so that it points to next inst

in sequence: PC = PC+1
•FETCH takes at least 3 steps/cycles

• 1,3,4 take one cycle, but 2 can take
more
• 1,4 can be done in same cycle

EA

OP

EX

S

F

D

32

17

33

Instruction Processing Step 2: DECODE
•First identify the opcode.

• In LC-3, this is always the first four bits of instruction.
o A 4-to-16 decoder asserts a control line corresponding

to the desired opcode.

•Depending on opcode, identify other operands
from the remaining bits.

• Example:
o for LDR, last six bits is offset
o for ADD, last three bits is source operand #2

EA

OP

EX

S

F

D

33

34

Instruction Processing Step 3:
EVALUATE ADDRESS

•For instructions that require memory access,
compute address used for access.

• Called Effective Address (EA)

•Examples:
• add offset to base register (as in LDR)
• add offset to PC
• add offset to zero

EA

OP

EX

S

F

D

34

18

35

Instruction Processing Step 4:
FETCH OPERANDS

•Obtain source operands needed to
perform operation.

• Effective address computed in
previous step used to fetch operands

•Examples:
• load data from memory (LDR)
• read data from register file (ADD)

EA

OP

EX

S

F

D

35

36

Instruction Processing Step 5:
EXECUTE

•Perform the operation,
using the source operands.

•Examples:
• send operands to ALU and assert ADD signal
• do nothing (e.g., for loads and stores)

EA

OP

EX

S

F

D

36

19

37

Instruction Processing Step 6:
STORE RESULT

•Write results to destination.
(register or memory)

•Examples:
• result of ADD is placed in destination register
• result of memory load is placed in destination register
• for store instruction, data is stored to memory

o write address to MAR, data to MDR
o assert WRITE signal to memory

EA

OP

EX

S

F

D

37

38

Instruction Processing Cycle - step 7

• Start over …
• The control unit just keeps repeating this whole process: so it now

Fetches a new instruction from the address currently stored in the PC.
oRecall that the PC was incremented in the first step (FETCH), so

the instruction retrieved will be the next in the program as stored in
memory - unless the instruction just executed changed the contents
of the PC.

• Note: Some instructions don't need all 6 phases
– If only using registers, skip Evaluate Address
– If only moving data, skip Execute

oSome processors have more phases and some have less
– In some cases the execution step itself is broken intro phases

38

20

39

Flow Control
• Normally we execute instructions one after another
• When might we not want to do this?

39

40

Changing the Sequence of Instructions
•In the FETCH phase, we increment the Program Counter by
1.
•What if we don’t want to always execute the instruction that
follows this one?

• examples: loop, if-then, function call
•Need special instructions that change the contents of the
PC.
•These are called control instructions.

• jumps are unconditional -- always change the PC
• branches are conditional -- change the PC only if

some condition is true (e.g., the result of an ADD is zero)

40

21

41

Example: LC-3 JMP Instruction
•Set the PC to the value contained in a register. This becomes
the address of the next instruction to fetch.

“Load the contents of R3 into the PC.”

Early programming languages had a “GOTO ..” statement

41

42

Instruction Processing Summary
•Instructions look just like data -- it’s all interpretation.
•Three basic kinds of instructions:

• Compute/operate instructions (ADD, AND, …)
• data movement instructions (LD, ST, …)
• control instructions (JMP, BRnz, …)

•Six basic phases of instruction processing:

• F ® D ® EA ® OP ® EX ® S
• not all phases are needed by every instruction
• phases may take variable number of machine cycles

42

22

43

From Logic to Processor Data Path
•The data path of a computer is all the logic used to process
information in the CPU

• Eg. data path of the LC-3.
• Use the combinational and sequential logic devices to assemble

datapath
o Decoders – convert instructions into control signals
o Multiplexers – to select inputs and outputs
o ALU – operate on the data
o sequential machine to build the control unit

• to design the datapath, define how each instruction is
implemented……we need to look at the ISA of the processor
• Next topics:

•Instruction set architecture: how is each instruction in LC3
implemented
•Assembly programming: programming the computer

43

44

Next..
•The Instruction set architecture (ISA) of the LC3

• How is each instruction implemented by the control and data paths in
the LC3

• Programming in machine code
• How are programs executed

o Memory layout, programs in machine code
•Assembly programming

• Assembly and compiler process
• Assembly programming with simple programs

44

