LC3 Assembly Programming

Today

= Quick review from lecture (on Assembly Prog)

= Exercise — to be submitted or demo




LC-3 Assembly Language Syntax

=Each line of a program is one of the following:
* an instruction
» an assembler directive (or pseudo-op)
* acomment
=\Whitespace (between symbols) and case are ignored.

=Comments (beginning with “;”) on one line are also ignored.
=An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Assembler Directives

= Pseudo-operations.. To make programmer’s life easier
edo not refer to operations executed by program
¢ used by assembler
* looks like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL A allocate one word, initialize with
value A

.STRINGZ |n-character |allocate n+1 locations,
string initialize w/characters and null
terminator




Trap Codes

= C-3 assembler provides “pseudo-instructions” for each
trap code, so you don’t have to remember them... more on
TRAP instructions later...

Code | Equivalent | Description

HALT | TRAP x25 Halt execution and print message to console.

IN TRAP x23 Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO[7:0].

out TRAP x21 Write one character (in RO[7:0]) to console.

GETC | TRAP x20 Read one character from keyboard.
Character stored in RO[7:0].

PUTS | TRAP x22 Write null-terminated string to console.
Address of string is in RO.

Label: refers to a memory location
;| assembly program for temp2= templ +2;
;:program starts at address x3000

; templ is location in memory

; note: offse
BRn Done ;if number
ADD R3, R

not specified by programmer

s Negative goto end
Adqd 2 store into R3

ST R3, temp2 ; ktore kesult into temp2
HALT ;halt program
Eae Must have Opcode and Operands
temp2 int temp2;
templ

Immediate values/constants
Decimal #
; end of program Binary b

Hex X
int templ =5;

.BLKW is Assembler Directive (reserve one location with label ‘temp2')

.FILL is Assembler Directive (reserve one location with label ‘templ’ ) and
Initialize the value there to be x0005




Recap: Problem Solving and Problem
Decomposition

= With an eye towards writing assembly programming/low-
level software

* Flowcharts anyone ?

» Decomposition:
» Break problem/solution into sub-problems/modules
o Structured programming
» Connect the modules...
o With conditionals, iterations, sequence,....

Three Basic Constructs

=There are three basic ways to decompose a task:

i True Test False Test False
es
Subtask 1 gondition condition
True

Subtask 1 ‘ ’ Subtask 2

Sequential Conditional Iterative

Task




LC-3 Control Instructions

»How do we use LC-3 instructions to encode the three basic
constructs?

Two instructions
=Sequential to negate R1,

¢ Instructions naturally flow from one to the next,

i.e. to compute 2's

Example: ADD R2, R1, RO

Condition: “Is RO = R1?” BRz equal
Code: Subtract R1 from RO; if equal, Z bit will be set.

e Then use BR instruction to transfer control to the proper subtask.

> ) complement of R1
so no special instruction needed to go
from one sequential subtask to the next.
=Conditional and Iterative [NOT R1, R1 ]
¢ Create code that converts condition into N, Z, or P. ADD R1, R1, #1

9
9
Converting Code to Assembly
= Can use a standard template approach
= Typical Constructs
* iflelse
« while
» do/while
» for
* |mportant: if-else could entail both conditional branch and
unconditional branch
10

10




iflelse

if(x > 0) LD R1l, X
{ BRP THEN
r2 = r3 + r4; ADD R5,R6,R7
} BRNZP DONE
else THEN ADD R2,R3)R4
{ DONE
r5 = r6 + r7;
}
/* DONE */ Unconditional branch
11
if/else
if(x > 0) LD R1,X
{ BRNZ ELSE
r2 = r3 + r4; ADD R2,R3,R4
} BRNZP DONE
else ELSE ADD R5,R6,R7
{ DONE
r5 = r6 + r7;

12




Clearing a register/variable
while \
x =0; AND R1,R1,#0
i = 10; AND R2,R2,#0
while(MApD R1,R1,#10 |

{ RNZ DONE
X =x+ i; ADD R2,R2,R1
i--; (ADD R1,R1,#-1 |
} BRNZP WHL

Initialize register/variable

Decremeft count by 1

13

Example (Labs this week): Multiplication

= No multiplication instruction in LC3

= |mplement multiplication by repeated addition
e X *Y =Y added to itself X times

= Simplifying assumption: Assume both are non-negative
e But could be zero
= |mportant Note on using LC3 simulator
¢ Open file (or start new one), type your assembly code
e Assemble
« Open Simulator.... Set breakpoint at last instruction/HALT of your
program- this will stop the simulation after the instruction

e Set it by click on small dot (exclamation) next to where you
want to set breakpoint...it goes red to indicate breakpoint set.

14

14




Exercise: Multiplication code in LC3

C code:
/* X,Y are variables */
if (X==0)|| (Y==0))
mult=0;
else
{ 1i=X;
while i»>0 {
mult = mult + Y;
i=1-1;}

<LC 3 Code...

<>Set X=5 and Y=7, check result
5 initialize RO=0 (RO is mult)
; read X from memory to R1

5 using LD R1, X instruction

; check if X=0 (go to DONE)

; read Y from memory to R2

; check if Y=0 (goto DONE)

; else part

; copy X to R3 (var i)

; check if i>@ (R3 Positive?)
; add Y to mult (add RO,R2)

; decrement i (R3= R3 -1)

; loop back to start of while
; DONE

15




