
1

LC3 Assembly Programming

1

2

Today
§ Quick review from lecture (on Assembly Prog)

§ Exercise – to be submitted or demo

2

2

3

LC-3 Assembly Language Syntax
§Each line of a program is one of the following:

• an instruction
• an assembler directive (or pseudo-op)
• a comment

§Whitespace (between symbols) and case are ignored.
§Comments (beginning with “;”) on one line are also ignored.

§An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

3

4

Assembler Directives
§ Pseudo-operations.. To make programmer’s life easier

•do not refer to operations executed by program

• used by assembler
• looks like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLKW n allocate n words of storage
.FILL A allocate one word, initialize with

value A
.STRINGZ n-character

string
allocate n+1 locations,
initialize w/characters and null
terminator

4

3

5

Trap Codes
§LC-3 assembler provides “pseudo-instructions” for each
trap code, so you don’t have to remember them… more on
TRAP instructions later…

Code Equivalent Description
HALT TRAP x25 Halt execution and print message to console.
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.
GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].
PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

5

6

; assembly program for temp2= temp1 +2;
.ORIG x3000 ;program starts at address x3000
LD R1, temp1 ; temp1 is location in memory

; note: offset not specified by programmer
BRn Done ;if number is Negative goto end
ADD R3, R1, #2 ; Add 2 store into R3
ST R3, temp2 ; store result into temp2

Done HALT ;halt program
;
temp2 .BLKW 1
temp1 .FILL x0005

.END ; end of program

Immediate values/constants
Decimal #
Binary b
Hex x

.BLKW is Assembler Directive (reserve one location with label ‘temp2’)

int temp2;

.FILL is Assembler Directive (reserve one location with label ‘temp1’) and
Initialize the value there to be x0005

int temp1 =5;

Must have Opcode and Operands

Label: refers to a memory location

6

4

7

Recap: Problem Solving and Problem
Decomposition
§ With an eye towards writing assembly programming/low-

level software

§ Flowcharts anyone ?

§ Decomposition:
• Break problem/solution into sub-problems/modules

o Structured programming
• Connect the modules…

o With conditionals, iterations, sequence,….

7

8

Three Basic Constructs
§There are three basic ways to decompose a task:

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

8

5

9

LC-3 Control Instructions
§How do we use LC-3 instructions to encode the three basic
constructs?

§Sequential
• Instructions naturally flow from one to the next,

so no special instruction needed to go
from one sequential subtask to the next.

§Conditional and Iterative
• Create code that converts condition into N, Z, or P.

Example:
Condition: “Is R0 = R1?”
Code: Subtract R1 from R0; if equal, Z bit will be set.

• Then use BR instruction to transfer control to the proper subtask.

NOT R1, R1
ADD R1, R1, #1
ADD R2, R1, R0
BRz equal

Two instructions
to negate R1,

i.e. to compute 2’s
complement of R1

9

10

Converting Code to Assembly
§ Can use a standard template approach
§ Typical Constructs

• if/else
• while
• do/while
• for

§ Important: if-else could entail both conditional branch and
unconditional branch

10

6

if/else
if(x > 0)
{

r2 = r3 + r4;
}

else
{

r5 = r6 + r7;

}
/* DONE */

LD R1, X
BRP THEN
ADD R5,R6,R7
BRNZP DONE

THEN ADD R2,R3,R4
DONE ...

Unconditional branch

11

if/else
if(x > 0)
{

r2 = r3 + r4;
}

else
{

r5 = r6 + r7;

}

LD R1,X
BRNZ ELSE
ADD R2,R3,R4
BRNZP DONE

ELSE ADD R5,R6,R7
DONE ...

12

7

while
x = 0;
i = 10;
while(i > 0)
{

x = x + i;
i--;

}

AND R1,R1,#0
AND R2,R2,#0
ADD R1,R1,#10

WHL BRNZ DONE

ADD R2,R2,R1
ADD R1,R1,#-1
BRNZP WHL

Clearing a register/variable

Decrement count by 1

Initialize register/variable

13

14

Example (Labs this week): Multiplication
§ No multiplication instruction in LC3
§ Implement multiplication by repeated addition

• X * Y = Y added to itself X times

§ Simplifying assumption: Assume both are non-negative
• But could be zero

§ Important Note on using LC3 simulator
• Open file (or start new one), type your assembly code
• Assemble

• Open Simulator…. Set breakpoint at last instruction/HALT of your
program– this will stop the simulation after the instruction

• Set it by click on small dot (exclamation) next to where you
want to set breakpoint…it goes red to indicate breakpoint set.

14

8

Exercise: Multiplication code in LC3

C code:
/* X,Y are variables */
if (X==0)|| (Y==0))

mult=0;
else

{ i=X;
while i>0 {
mult = mult + Y;
i = i-1;}

²LC 3 Code….
²Set X=5 and Y=7, check result
; initialize R0=0 (R0 is mult)
; read X from memory to R1
; using LD R1, X instruction
; check if X=0 (go to DONE)
; read Y from memory to R2
; check if Y=0 (goto DONE)
; else part
; copy X to R3 (var i)
; check if i>0 (R3 Positive?)
; add Y to mult (add R0,R2)
; decrement i (R3= R3 -1)
; loop back to start of while
; DONE

15

