
LC3 Assembly Programming
Week 8 Lab

Exercise:
Subroutines and Input

Show demo to one of the instruction team

2

Exercise
§ Write LC3 assembly program that uses subroutines, loops

through array MyArray of N numbers, multiplies each by integer
y, writes into new array OutArray stored starting at x5000.

§ MyArray stored starting at x4000 and N is variable initialized to 8
• myArray stores values 10, 20,30,…,70,80

§ Read value y from input where y is between 0 and 9
• Convert the ASCII character to binary

o How ? Subtract x30 (add -48) ASCII character read into R0

§ Multiplication is a subroutine
§ Loop through MyArray

• Call Mult to multiply each element by y
• Store into output array OutArray which is stored starting at address x5000

§ Print message “Completed Multiplication:
§ Halt program

3

C code:

n=8;
printf(“Enter value of y \n”);
scanf(%d, &y);
while i>0 {

outArray[i]= myArray[i] * y;}
printf(“Completed Multiplication\n”);

4

More specifications
§ MyArray starts at x4000

• Use same technique from last lab to define MyData and load into program

§ OutArray starts at x5000
§ Program prints “Enter number Y” then prompts for input from

keyboard: y is a between 0 and 9.
§ Program calls subroutine Mult to multiply elements by y

• Input to Mult is passed through registers R1, R2
• Output from Mult is in register R3

§ After looping through array of N values (N=8 in this case), print
message “Completed Multiplication”

§ Halt

5

Creating and Loading a “data” file
§ LC3Tools permits loading multiple object files

• Loaded at the address specified in that object file (i.e., .ORIG command)

§ Can use this to create and load a file containing the data to be
processed by your code.

§ Ex: MyData.asm is a list of numbers starting at address x4000
§ Assemble the code – creates object code MyData.obj
§ Load this object file into simulator

• Important: make sure you reset program counter is set to start of your main
program. (Or – load data first and then load program)

.ORIG x4000

.FILL #10

.FILL #20

.FILL #30

.FILL #40

.END

MyData.asm Put values 10,20,30,40
at addresses x4000, 4001, 4002, 4003
Respectively.
Loading MyData.obj will result in these
Values in those memory addresses of
the simulator

6

Tips….
§ Remember to place a breakpoint at the Halt instruction
§ Rewrite your multiplication code so that it is a subroutine MULT

• Inputs are passed through registers R1, R2
• Output computed in register R3

§ Remember to save and then restore registers R1,R2, R3 in your
“main” before/after calling subroutine MULT

§ Define .STRINGZ to hold the messages to print to display
• msg1 .STRINGZ “Enter number Y”
• msg2 .STRINGZ “Completed Multiplication”

§ How do you load start of this string to R0 (before calling PUTS?)
• LEA R0, msg1; copy address of msg1 into R0 works if msg1 is close enough
• Else ??? Here is one trick:

link .FILL msg ; variable link contains address of msg
In code LD R0, link ; loads address of msg into R0

7

Arranging code with subroutines: Observations
; start main

LD R5, temp
; other code
JSR Mult ; call subroutine
…
HALT

temp .FILL 8
MyArray .FILL x4000
OutArray .FILL x5000
msg1 .STRINGZ “Enter number Y”
msg2
Mult … ; first instruction of Mult

..
RET ; return from Mult

Who1 .BLKW #1 ; random var for Mult
;
XOR … ; first instruction of XOR

.. ; body of XOR
RET ; return from XOR

Code written so that PC
never gets to these addresses

In Mult, when you hit RET instruction
Program returns to main – does not

continue past RET but
can load from label Who1

8

High level programs Analogy

int foo (int x) { /* function definition for foo */
…

return(j);} /* return from foo */

int bar (int x,y){ /* function def for bar */
…

return (z);} /* return from bar */
/* start of main */
int main() { /* start of main */

int a,b,c;
b= foo(a); /* call foo from main */
a= bar(b,c); /* call bar from main */
return 0; /* end of main */

}

9

Reference: assembly program for Multiplication
; code to multiply two integers, num1 and num2 stored in
; memory and initialized to x8 and x8
.ORIG x3000

AND R6, R6, #0 ;clear R6, it will hold the result
LD R3, num1 ; load first number into R1
BRz done ; if number is zero then done
LD R4, num2 ; load second number into R2
BRz done ; if number2 is zero then done
; else loop through R3 times adding R4 to
; itself – i.e., add R4 to value in R6 (product)

loop ADD R6, R6, R4 ; add R4 to current product
ADD R3, R3, #-1 ; decrement counter
BRp Loop ; if counter >0 then repeat loop

done HALT ; else halt, value of product is in R6

num1 .FILL x8
num2 .FILL x5

.END

