

Unsigned & Signed Numeric Values			
X	B2U(<i>X</i>)	B2T(<i>X</i>)	 Equivalence
0000	0	0	 Same encodings for
0001	1	1	nonnegative values
0010	2	2	 Uniqueness
0011	4	4	•
0100	5	5	 Every bit pattern represents unique integer value Each representable integer has unique bit encoding
0110	6	6	
0111	7	7	
1000	8	8	
1001	9	-7	■ ⇒ Can Invert Mappings
1010	10	-6	• $U2B(x) = B2U^{-1}(x)$
1011	11	-5	 Bit pattern for unsigned integer
1100	12	-4	• $T2B(x) = B2T^{-1}(x)$
1101	13	-3	 Bit pattern for two's comp integer
1110	14	-2	
1111	15	-1	

Bitwise AND

- Bitwise AND: 0101 AND 0110 in C: (5 & 6)
 0100
- Bitwise OR: 0101 OR 0110 in C: (5 | 6)
 - 0111
- Bitwise NOT: NOT 0101 in C: ~5
 1010
- Bitwise XOR: 0101 XOR 0110 in C: 5⁶
 0011
- Bitwise NAND no C operator, therefore
 0101 NAND 0110 in C: ~(5 & 6)
- Bitwise NOR no C operator, therefore
 0101 NOR 0110 in C: ~(5 | 6)

```
Shift Operations
x = 01100001 and y=2 (using 8-bit numbers)
• z = 10100001
■ x >> y
  · x right shifted y bit positions, sign extended/arithmetic shift
     o Sign bit shifted into positions vacated by shifted bits
                     y=2
  • x= 01100001
                            (using 8-bit numbers)
  • x >> y = 00011000
  • z >> y =11101000
• x << y
  • x left shifted y bit positions, zero placed in
   positions vacated by shifted bits
  • x \ll y = 10000100
  • z \ll y = 10000100
In C, x,y are 32 bit numbers:
  • What is F= (x >> 31) & 0x1
```


Examples

```
8 bit numbers, f=7, g=8
    f= 00000111    g = 00001000
h= (f & g) (bitwise AND)....
    h= 00000000
h = (f & & g) (logical AND)...
    h = 1
    !h = 0 since h is non-zero
h= (f | g) (bitwise OR)... h= ?
h= (f | g) (logical OR).... h= ?
h= (~f | ~g)...h=?
h= (!f && !g)...h=?
```


