
1

Review: Data
Representation and
Boolean operators in C

Based on slides © O’Hallaron
Additional material © 2020 Narahari

1

Binary Representation: Summary
§ Every storage locations stores a finite sequence of bits

• 8-bit, 16-bit, 32-bit etc.
§ The same bit string can mean different things depending on

how the program wants to look at it.

Address 7 6 5 4 3 2 1 0

35 1 0 0 0 0 0 0 1

36 1 0 0 0 0 1 1 1

37 1 1 1 0 0 0 0 1

38 0 1 1 0 1 1 0 1

Unsigned: +129

2C: -127

2C: 109

ASCII: ‘m’

2

2

Unsigned & Signed Numeric Values

§ Equivalence
• Same encodings for

nonnegative values
§ Uniqueness

• Every bit pattern represents
unique integer value

• Each representable integer has
unique bit encoding

§ Þ Can Invert Mappings
• U2B(x) = B2U-1(x)

o Bit pattern for unsigned integer

• T2B(x) = B2T-1(x)
o Bit pattern for two’s comp integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

3

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

+ + + + + +• • •

- + + + + +• • •

ux

x-

w–1 0

+2w–1 – –2w–1 = 2*2w–1 = 2w
ux =

x x ³ 0
x + 2w x < 0
ì
í
î

Relation between Signed & Unsigned

4

3

Basic Logic Operations/Gates

§ AND:
• Equivalent notations: A AND B = A.B = AÙB

§ OR
• Equivalent notations: A or B = A+B = AÚB NOT

§ NOT
• Equivalent notations: not A = A’ = A

§ XOR
• Equivalent Notations: A XOR B = A ^ B

§ Other common logic operations:
• NAND = NOT AND
• NOR = NOT OR

lTruth Tables of Basic Operations

5

Next…a little bit of “reality”
§ look at how some of the concepts we have studied take

shape in ‘real life’
• C programming language

6

4

Data Representations
§ Sizes of C Objects (in Bytes)

• C Data Type Compaq Alpha Typical Intel IA32/IA64
o int 4 4
o long int 8 8
o char 1 1
o short 2 2
o float 4 4
o double 8 8
o long double 8 10
o char * 8 4/8 (64 bit needs 8)

– Or any other pointer

7

Signed vs Unsigned in C
§ C allows int to be defined as unsigned or signed (!!)
§ Constants

• By default are considered to be signed integers
• Unsigned if have “U” as suffix

0U, 4294967259U

§ Casting – nasty stuff!!! Or is it fun ??
• Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;

tx = (int) ux;
uy = (unsigned) ty;

• Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

8

5

short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;

Casting Signed to Unsigned

§ C Allows Conversions from Signed to Unsigned

§ Resulting Value
• No change in bit representation
• Nonnegative values unchanged

o ux = 15213

• Negative values change into (large) positive values
o uy = 50323

§ Casting Surprises in expression evaluation
• If you mix signed and unsigned then signed cast to unsigned….and

unexpected results in comparisons (>, < etc.)

9

Why Should I Use Unsigned?

§ Don’t Use Just Because Number Nonzero
• Easy to make mistakes

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

§ Do Use When Performing Modular Arithmetic
• Multiprecision arithmetic
• Other esoteric stuff

§ Do Use When Need Extra Bit’s Worth of Range
• Working right up to limit of word size

10

6

Logical Operations in C
§ C supports both bitwise and boolean logic operations

• x & y bitwise logic operation
• x && y boolean operation: output is boolean value

§ What’s going on here?
• In boolean operation the result has to be TRUE (1) or FALSE (0)
• Treats any non-zero argument as TRUE and returns only TRUE (1) or

FALSE (0)
§ In C: logical operators do not evaluate their second

argument if result can be obtained from first
• a && 5/a can we get divide by zero error?

11

Bitwise Logical Operators
§ View n-bit number as a collection of n logical values

• operation applied to each bit independently
§ Number operated on is an n-bit number
§ Operation being performed is logical operation on each bit
§ Masking operations

• If we are only interested in last 8 bits of a 32 bit number X, how to
extract this?

• X & 0xFF (0xFF is notation for hex number FF)
o Zero out the most significant 24 bits; value of least significant 8

bits is same as the value of these in X
o xABCD27A4 & 0xFF = xA4 (in 32 bits: 0x000000A4)

• X & 0x1 = 0 if X is even and =1 if X is odd

12

7

Bitwise Logical Operations
§ View n-bit field as a collection of n logical values

• Apply operation to each bit independently

§ Bitwise AND: useful for clearing bits
• AND with zero = 0
• AND with one = no change

§ Bitwise OR: useful for setting bits
• OR with zero = no change
• OR with one = 1

§ Computers don’t support individual bits as a data type
• Just use least significant of n-bit integer
• Integers are generally more useful

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

13

Bitwise Operators in C
§ Can only be applied to integral operands
§ that is, char, short, int and long
§ (signed or unsigned)
& Bitwise AND

| Bitwise OR
^ Bitwise XOR
<< Shift Left

>> Shift Right
~ 1’s Complement (Inversion)

14

8

Bitwise AND
§ Bitwise AND: 0101 AND 0110 in C:(5 & 6)

• 0100

§ Bitwise OR: 0101 OR 0110 in C:(5 | 6)
• 0111

§ Bitwise NOT: NOT 0101 in C: ~5
• 1010

§ Bitwise XOR: 0101 XOR 0110 in C: 5^6
• 0011

§ Bitwise NAND – no C operator, therefore
• 0101 NAND 0110 in C: ~(5 & 6)

§ Bitwise NOR – no C operator, therefore
• 0101 NOR 0110 in C: ~(5 | 6)

15

Shift Operations
§ x = 01100001 and y=2 (using 8-bit numbers)
§ z = 10100001
§ x >> y

• x right shifted y bit positions, sign extended/arithmetic shift
o Sign bit shifted into positions vacated by shifted bits

• x= 01100001 y=2 (using 8-bit numbers)
• x >> y = 00011000
• z >> y =11101000

§ x << y
• x left shifted y bit positions, zero placed in
positions vacated by shifted bits

• x << y = 10000100
• z << y = 10000100

§ In C, x,y are 32 bit numbers:
• What is F= (x >> 31) & 0x1

16

9

Boolean Relational Operators
§ What is the semantics of:

• If (x==0) then ……
• how many outcomes for (x==0) ?

§ Concept of boolean operators
• Apply logic operators, but treat input and output as boolean variables

o Only 1 or 0 (True or False) values for entire variable
• But input strings can be n-bits long?

o Treat entire string as ONE boolean variable
o How ?

17

Logical Operations in C
§ ! Logical NOT

• !x
o !x=0 if x is non-zero, !x=1 if value of x is zero

§ && Logical AND
• x && y

o x && y = 1 if value of x is not zero and value of y is not zero
o x && y = 0 if both x and y are zero

§ || logical OR
• x || y

o x || y =1 if at least one of x,y are not zero
o x || y = 0 if both x,y are zero

18

10

Examples
§ 8 bit numbers, f=7, g=8

• f= 00000111 g = 00001000
§ h= (f & g) (bitwise AND)….

• h= 00000000
§ h = (f && g) (logical AND)…

• h = 1
§ !h = 0 since h is non-zero
§ h= (f | g) (bitwise OR)… h= ?
§ h= (f || g) (logical OR)…. h= ?
§ h= (~f | ~g)…h=?
§ h= (!f && !g)…h=?

19

Byte-Oriented Memory Organization
§ Programs Refer to Virtual Addresses

• Conceptually very large array of bytes
• Actually implemented with hierarchy of different memory types

o SRAM, DRAM, disk
o Only allocate for regions actually used by program

• In Unix and Windows, address space private to particular “process”
o Program being executed
o Program can clobber its own data, but not that of others

§ Compiler + Run-Time System Control Allocation
• Where different program objects should be stored
• Multiple mechanisms: static, stack, and heap
• In any case, all allocation within single virtual address space

20

11

Encoding Byte Values
§ Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

o Base 16 number representation
o Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
o Write FA1D37B16 in C as 0xFA1D37B

– Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

21

Machine Words
§ Machine Has “Word Size”

• Nominal size of integer-valued data
o Including addresses

• Some current machines are 32 bits (4 bytes)
o Limits addresses to 4GB
o Becoming too small for memory-intensive applications

• Most (and all Higher-end) systems are 64 bits (8 bytes)
o Potentially address » 1.8 X 1019 bytes

• Machines support multiple data formats
o Fractions or multiples of word size
o Always integral number of bytes

22

12

Word-Oriented Memory Organization

§ Addresses Specify Byte
Locations
• Address of first byte in

word
• Addresses of successive

words differ by 4 (32-bit) or
8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

23

Byte Ordering
§ How should bytes within multi-byte word be ordered in

memory?
§ Conventions

• PowerPC (old Mac’s) are “Big Endian” machines
o Least significant byte has highest address
o Big end first

• Intel x86, PC’s are “Little Endian” machines
o Least significant byte has lowest address
o Little end first

• Most network protocols use Big Endian
§ The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-

century satire Gulliver’s Travels. The subjects of the empire of Blefuscu were
divided into two factions: those who ate eggs starting from the big end and
those who ate eggs starting from the little end.

24

13

Byte Ordering Example
§ Big Endian

• Least significant byte has highest address
§ Little Endian

• Least significant byte has lowest address
§ Example

• Variable x has 4-byte representation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

25

Representing Integers
§ int A = 15213;
§ int B = -15213;
§ long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 0000 3 B 6 D

Decimal: -15213

Hex: FFFF C 4 9 3

•Little endian layout for A:
•For B
•For C

•Big endian layout for A:
•For B:
•For C:

26

14

Representing Integers
§ int A = 15213;
§ int B = -15213;
§ long int C = 15213;

6D
3B
00
00

Little Endian

3B
6D

00
00

BigEndian

93
C4
FF
FF

Little Endian

C4
93

FF
FF

Big Endian

B: Two’s complement representation

00
00
00
00

6D
3B
00
00

Little endian 64bit

3B
6D

00
00

Big Endian

6D
3B
00
00

Little endian

A

C

27

Why this discussion of Bit manipulation
operations in C…..Project 2!

§ Project 2: Given a set of functions, each of which does not
use conditional statements and implements some bit
manipulation function, determine the function being
implemented.
• Rewrite the code to provide an equivalent more readable code using

any C operators including conditional statements.
• Why is this useful – some functions can be executed much quicker if

they can re-written using bit manipulation operations

28

