
1

Review: Data 
Representation and 
Boolean operators in C

Based on slides © O’Hallaron
Additional material © 2020 Narahari
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Binary Representation: Summary
§ Every storage locations stores a finite sequence of bits

• 8-bit, 16-bit, 32-bit etc.
§ The same bit string can mean different things depending on 

how the program wants to look at it.

Address 7 6 5 4 3 2 1 0

35 1 0 0 0 0 0 0 1

36 1 0 0 0 0 1 1 1

37 1 1 1 0 0 0 0 1

38 0 1 1 0 1 1 0 1

Unsigned: +129

2C: -127

2C: 109

ASCII: ‘m’
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Unsigned & Signed Numeric Values

§ Equivalence
• Same encodings for 

nonnegative values
§ Uniqueness

• Every bit pattern represents 
unique integer value

• Each representable integer has 
unique bit encoding

§ Þ Can Invert Mappings
• U2B(x)  =  B2U-1(x)

o Bit pattern for unsigned integer

• T2B(x)  =  B2T-1(x)
o Bit pattern for two’s comp integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

+ + + + + +• • •

- + + + + +• • •

ux

x-

w–1 0

+2w–1 – –2w–1 =  2*2w–1 =  2w
ux =

x x ³ 0
x + 2w x < 0
ì 
í 
î 

Relation between Signed & Unsigned
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Basic Logic Operations/Gates

§ AND: 
• Equivalent notations: A AND B = A.B = AÙB 

§ OR
• Equivalent notations: A or B = A+B = AÚB NOT

§ NOT
• Equivalent notations: not A = A’ = A

§ XOR 
• Equivalent Notations: A XOR B = A ^ B

§ Other common logic operations:
• NAND = NOT AND
• NOR = NOT OR

lTruth Tables of Basic Operations
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Next…a little bit of “reality”
§ look at how some of the concepts we have studied take 

shape in ‘real life’
• C programming language
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Data Representations
§ Sizes of C Objects (in Bytes)

• C Data Type Compaq Alpha Typical Intel IA32/IA64
o int 4 4
o long int 8 8
o char 1 1
o short 2 2
o float 4 4
o double 8 8
o long double 8 10
o char * 8 4/8 (64 bit needs 8)

– Or any other pointer
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Signed vs Unsigned in C
§ C allows int to be defined as unsigned or signed (!!)
§ Constants

• By default are considered to be signed integers
• Unsigned if have “U” as suffix

0U, 4294967259U

§ Casting – nasty stuff!!! Or is it fun ??
• Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;

tx = (int) ux;
uy = (unsigned) ty;

• Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;
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short int           x =  15213;
unsigned short int ux = (unsigned short) x;
short int           y  = -15213;
unsigned short int uy = (unsigned short) y;

Casting Signed to Unsigned

§ C Allows Conversions from Signed to Unsigned

§ Resulting Value
• No change in bit representation
• Nonnegative values unchanged

o ux = 15213

• Negative values change into (large) positive values
o uy = 50323

§ Casting Surprises in expression evaluation
• If you mix signed and unsigned then signed cast to unsigned….and

unexpected results in comparisons ( >, < etc.)
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Why Should I Use Unsigned?

§ Don’t Use Just Because Number Nonzero
• Easy to make mistakes

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

§ Do Use When Performing Modular Arithmetic
• Multiprecision arithmetic
• Other esoteric stuff

§ Do Use When Need Extra Bit’s Worth of Range
• Working right up to limit of word size
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Logical Operations in C
§ C supports both bitwise and boolean logic operations

• x & y    bitwise logic operation
• x && y   boolean operation: output is boolean value

§ What’s going on here?
• In boolean operation the result has to be TRUE (1) or FALSE (0)
• Treats any non-zero argument as TRUE and returns only TRUE (1) or 

FALSE (0)
§ In C: logical operators do not evaluate their second 

argument if result can be obtained from first
• a && 5/a     can we get divide by zero error?
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Bitwise Logical Operators
§ View n-bit number as a collection of n logical values

• operation applied to each bit independently
§ Number operated on is an n-bit number
§ Operation being performed is logical operation on each bit
§ Masking operations

• If we are only interested in last 8 bits of a 32 bit number X, how to 
extract this?

• X & 0xFF (0xFF is notation for hex number FF)
o Zero out the most significant 24 bits; value of least significant 8 

bits is same as the value of these in X
o xABCD27A4 & 0xFF = xA4 (in 32 bits: 0x000000A4 )

• X & 0x1 = 0 if X is even and =1 if X is odd
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Bitwise Logical Operations
§ View n-bit field as a collection of n logical values

• Apply operation to each bit independently

§ Bitwise AND: useful for clearing bits
• AND with zero = 0
• AND with one = no change

§ Bitwise OR: useful for setting bits
• OR with zero = no change
• OR with one = 1

§ Computers don’t support individual bits as a data type
• Just use least significant of n-bit integer 
• Integers are generally more useful

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111
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Bitwise Operators in C
§ Can only be applied to integral operands
§ that is, char, short, int and long
§ (signed or unsigned)
& Bitwise AND

| Bitwise OR
^ Bitwise XOR
<< Shift Left 

>> Shift Right
~ 1’s Complement (Inversion)
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Bitwise AND
§ Bitwise AND: 0101 AND 0110 in C:(5 & 6)

• 0100

§ Bitwise OR: 0101 OR 0110 in C:(5 | 6)
• 0111

§ Bitwise NOT: NOT 0101 in C: ~5
• 1010

§ Bitwise XOR: 0101 XOR 0110 in C: 5^6
• 0011

§ Bitwise NAND – no C operator, therefore 
• 0101 NAND 0110 in C: ~(5 & 6)

§ Bitwise NOR – no C operator, therefore 
• 0101 NOR 0110 in C: ~(5 | 6)
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Shift Operations
§ x = 01100001 and y=2   (using 8-bit numbers)
§ z = 10100001
§ x >> y

• x right shifted y bit positions, sign extended/arithmetic shift
o Sign bit shifted into positions vacated by shifted bits

• x= 01100001      y=2   (using 8-bit numbers)
• x >> y = 00011000
• z >> y =11101000

§ x << y
• x left shifted y bit positions, zero placed in 
positions vacated by shifted bits

• x << y = 10000100
• z << y = 10000100

§ In C, x,y are 32 bit numbers:
• What is F= (x >> 31) & 0x1
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Boolean Relational Operators
§ What is the semantics of:

• If (x==0) then ……
• how many outcomes for (x==0) ?

§ Concept of boolean operators
• Apply logic operators, but treat input and output as boolean variables

o Only 1 or 0 (True or False) values for entire variable
• But input strings can be n-bits long?

o Treat entire string as ONE boolean variable
o How ?
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Logical Operations in C
§ ! Logical NOT

• !x
o !x=0 if x is non-zero, !x=1 if value of x is zero

§ && Logical AND
• x && y

o x && y = 1 if value of x is not zero and value of y is not zero
o x && y = 0 if both x and y are zero

§ || logical OR
• x || y

o x || y =1 if at least one of x,y are not zero
o x || y = 0 if both x,y are zero
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Examples
§ 8 bit numbers, f=7, g=8

• f= 00000111    g = 00001000
§ h= (f & g) (bitwise AND)….

• h= 00000000
§ h = (f && g) (logical AND)…

• h = 1
§ !h = 0 since h is non-zero
§ h= (f | g)  (bitwise OR)… h= ?
§ h= (f || g) (logical OR)…. h= ?
§ h= (~f | ~g)…h=?
§ h= (!f && !g)…h=?
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Byte-Oriented Memory Organization
§ Programs Refer to Virtual Addresses

• Conceptually very large array of bytes
• Actually implemented with hierarchy of different memory types

o SRAM, DRAM, disk
o Only allocate for regions actually used by program

• In Unix and Windows, address space private to particular “process”
o Program being executed
o Program can clobber its own data, but not that of others

§ Compiler + Run-Time System Control Allocation
• Where different program objects should be stored
• Multiple mechanisms: static, stack, and heap
• In any case, all allocation within single virtual address space
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Encoding Byte Values
§ Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

o Base 16 number representation
o Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
o Write FA1D37B16 in C as 0xFA1D37B

– Or   0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Machine Words
§ Machine Has “Word Size”

• Nominal size of integer-valued data
o Including addresses

• Some current machines are 32 bits (4 bytes)
o Limits addresses to 4GB
o Becoming too small for memory-intensive applications

• Most (and all Higher-end) systems are 64 bits (8 bytes)
o Potentially address » 1.8 X 1019 bytes

• Machines support multiple data formats
o Fractions or multiples of word size
o Always integral number of bytes
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Word-Oriented Memory Organization

§ Addresses Specify Byte 
Locations
• Address of first byte in 

word
• Addresses of successive 

words differ by 4 (32-bit) or 
8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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Byte Ordering
§ How should bytes within multi-byte word be ordered in 

memory?
§ Conventions

• PowerPC (old Mac’s) are “Big Endian” machines
o Least significant byte has highest address
o Big end first

• Intel x86, PC’s are “Little Endian” machines
o Least significant byte has lowest address
o Little end first

• Most network protocols use Big Endian
§ The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-

century satire Gulliver’s Travels. The subjects of the empire of Blefuscu were 
divided into two factions: those who ate eggs starting from the big end and 
those who ate eggs starting from the little end.
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Byte Ordering Example
§ Big Endian

• Least significant byte has highest address
§ Little Endian

• Least significant byte has lowest address
§ Example

• Variable x has 4-byte representation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing Integers
§ int A = 15213;
§ int B = -15213;
§ long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 0000 3    B    6    D

Decimal: -15213

Hex: FFFF C 4 9 3

•Little endian layout for A:
•For  B
•For C

•Big endian layout for A:
•For B:
•For C:
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Representing Integers
§ int A = 15213;
§ int B = -15213;
§ long int C = 15213;

6D
3B
00
00

Little Endian

3B
6D

00
00

BigEndian

93
C4
FF
FF

Little Endian

C4
93

FF
FF

Big Endian

B: Two’s complement representation

00
00
00
00

6D
3B
00
00

Little endian 64bit

3B
6D

00
00

Big Endian

6D
3B
00
00

Little endian

A

C
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Why this discussion of Bit manipulation 
operations in C…..Project 2!

§ Project 2: Given a set of functions, each of which does not 
use conditional statements and implements some bit 
manipulation function, determine the function being 
implemented. 
• Rewrite the code to provide an equivalent more readable code using 

any C operators including conditional statements.
• Why is this useful – some functions can be executed much quicker if

they can re-written using bit manipulation operations
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