Logic Design (Part 2) Combinational Logic Circuits (Chapter $3+$ Notes)

Based on slides © McGraw-Hill
Additional material © 2008 Roth
Additional material © 2010 Taylor
Additional material © 2013 Farmer
Additional material © 2018 Narahari

1

Next

- Download Set1 of Cedar Logic or LogiSim examples
- From lectures webpage
- Designing combinational logic circuits
- Cedar Logic or LogiSim
- Intro to Combinational logic devices
- Building complex devices using the basic gates
- Adders, Multiplexers, Decoders,.....

Digital Logic Design - Introduction

-MOS transistors used as switches to implement basic logic gates (boolean operations) - (NAND, NOT, AND, OR,..).

- Boolean logic functions operate on boolean variables
- expressed with AND, OR, and NOT
-(A AND B) OR (NOT A AND C)
oAND, OR, NOT notation replaced by . + ‘
$\circ(A \cdot B)+\left(A^{\prime} . C\right)$
-Boolean function represented as:
-Truth table
- logic circuit

Digital Logic Circuits

- We saw how we can build the simple logic gates using transistors
- Can build any boolean function using these gates
- Use these gates as building blocks to build more complex combinational circuits
- Multiplier, Multiplexer, Decoder, \qquad
- ...any boolean function
- Develop a theoretically sound approach to designing boolean functions and circuits....Boolean Algebra

Definition: Combinational and Sequential Logic Circuits

- A circuit is a collection of devices that are physically connected by wires
- Combinational circuit
- Sequential circuit
- In Combinational circuit the input determines output
- In sequential circuit, the input and the previous 'state' (previous values) determine output and next 'state'
- Need to 'remember' previous value - need memory device
- Need circuit to implement concept of storage
- Start with design of Combinational Logic circuits

Boolean Function..Recall from Discrete Math!

- Output(s) is a function on input boolean variables
- $z=f(x, y, \ldots)$
- x, y are boolean variables (0 or 1)
- $z=f(x, y)$ is a boolean output
- The "operators" used are any of the boolean logic operators - AND, OR, NOT, NAND, etc.
- If integers are represented using binary notation, then all functions over integers are boolean functions
- How do we represent boolean functions?

Boolean Functions

Truth table (describes behavior)

- A function can be thought of as a mapping from inputs to outputs.
- Think of a black box with n binary inputs and 1 binary output
- We can express the action of this function in terms of a truth table which says what the output should be for every input pattern.
- This function implements a binary adder!

7

Boolean Algebra

- George Boole - Famous Mathematician/Logician
- Boolean Algebra - branch of Algebra, where variables can only have values of true (1) or false (0)
- Boolean operators: AND(.), OR(+), NOT(~ or !)
- With Boolean Algebra:
- We create "functions" using boolean variables and operators
- Any logical function can be expressed in terms of the three elementary operations: AND, OR and NOT
- Boolean functions can be rearranged and sometimes simplified by applying algebraic identities
- DeMorgan's laws: allow conversion from AND to OR (using NOT)
- Big idea - you can write a logical function as a boolean algebraic expression and then use various identities to rewrite that function in an equivalent (usually simpler) form.

A note on De-Morgan's Law

- Where have you seen this before?
- In a different context?
- Set operations: Union, Intersect, Comp.
- $\left(A^{c} \cup B^{c}\right)=(A \cap B)^{c}$
- $\left(A^{c} \cap B^{c}\right)=(A \cup B)^{c}$
- De-Morgan's law applies to any boolean algebra
- With corresponding operations:
- Union = OR
- Intersect = AND

9

DeMorgan's Law: Converting AND to OR with help from NOT

- NOT(A AND B) = (NOT A) OR (NOT B);
- $\operatorname{NOT}(\mathrm{A} O R B)=($ NOT A) AND (NOT B);
- In C syntax: $\sim(A \& B)=\sim A \mid \sim B \quad \sim(A \mid B)=\sim A \& \sim B$

A	B	\sim A	~B	$\sim A \& \sim B$	(A\&B)	$\sim A \mid \sim B$	(A\|B)	$\sim(A \mid B)$	$\begin{gathered} \sim(A \& \\ \sim \\ \text { B) } \end{gathered}$
0	0	1	1	1	0	1	0	1	1
0	1	1	0	0	0	1	1	0	1
1	0	0	1	0	0	1	1	0	1
1	1	0	0	0	1	0	1	0	0

DeMorgan's Law

-Converting AND to OR (with some help from NOT)
-Consider the following gate:
From DeMorgan's laws:
 NOT ((NOT A) AND (NOT B))= NOT (NOT A) OR NOT(NOT B)= A OR B

A	B	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$	$\overline{\mathrm{~A}} \cdot \overline{\mathrm{~B}}$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

Same as A+B
To convert AND to OR (or vice versa), invert inputs and output.

Representation of Boolean Logic Functions

\checkmark A logic function can be represented as

1. a truth table or
2. a logic expression or
3. a logic circuit
» Example

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Completeness: Very Important Concept

- It can be shown that any truth table (i.e. any binary function of binary variables) can be reduced to combinations of the AND \& NOT functions, or of the OR \& NOT functions.
- This result extends also to functions of more than two variables
- In fact, it turns out to be convenient to use a basic set of three logic gates:
- AND, OR \& NOT or NAND, NOR \& NOT
- In fact, can implement all logic functions using just NAND!
- Question to ask: How do we design a good circuit?

Truth Tables to Boolean Function/Circuits

- A truth table can be mapped to a Boolean function
- In Disjunctive Normal Form (DNF) - an OR of AND terms - Recall from Discrete 1 (CS1311)
- Each row in the truth table corresponds to a conjunction of literals (i.e., Boolean variables) and is called minterm
- Literal is Boolean variable A or its complement A '
- To derive the Boolean function F:
- Examine each row where the output $=1$
- Include this conjunctive term as an AND of the literals
- $F=O R$ of the included terms (minterms)
- Also called sum of products (OR of minterms)

Truth Tables to Boolean Function

- Input variables: $\mathrm{A}, \mathrm{B}, \mathrm{C}$ (Notation: NOT A written as A^{\prime})
- Output = F
- First examine rows where $F=1$
- $F=1$ when $A=0 B=1 C=0$
- bool func is (A' AND B AND C')
- $F=1$ when $A=1 B=0 C=0$
- bool func is (A AND B' AND C')
- $F=1$ when $A=1 B=1 C=0$
- bool func is (A AND B AND C')
- $F=0$ on all other input combinations

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	0	0	0
$\mathbf{0}$	0	1	0
$\mathbf{0}$	1	0	1
$\mathbf{0}$	1	1	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1
1	0	1	0
$\mathbf{1}$	1	0	1
$\mathbf{1}$	1	1	0

- Write F as OR of above minterms
- $\mathrm{F}=\left(\mathrm{A}^{\prime} . \mathrm{B}^{\prime} . \mathrm{C}^{\prime}\right) \mathrm{OR}\left(\mathrm{A} . \mathrm{B}^{\prime} . \mathrm{C}^{\prime}\right) \mathrm{OR}\left(\mathrm{A} . \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime}\right)$

Boolean functions, Circuits \& Boolean Algebra!

-Power of abstraction....To build boolean functions, you can work with basic gates..no need to go down to the transistor level !!

- what is the theory behind boolean logic design ?
- Boolean Algebra
- DeMorgan's Law: Convert AND\&NOT to OR\&NOT
- (NOT A) AND (NOT B) $=$ NOT (A OR B) (i.e., A NOR B)
- (NOT A) OR (NOT B) = NOT (A AND B) (i.e, A NAND B)
- Disjunctive Normal Form (DNF), etc.
- Question: How can we design an "efficient" circuit to implement a Boolean function?
- "efficient" = minimum number of logic gates
- Example:
- Given $F=A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C+A B C^{\prime}+A B^{\prime} C: 4$ AND gates \& OR gate
- From Bool Alg., this is equivalent to $F=B C^{\prime}+B^{\prime} C: 2$ AND gates \& 1 OR gate

Boolean Algebra and Combinational Logic Design

- Boolean Logic is a Boolean Algebra
- laws of Boolean Algebra can be applied
- How do we design "efficient" circuits? Is there a methodology we can follow?
- Boolean algebra (Karnaugh Maps)
- Again, recall from CS1311 Discrete 1 !
- Reading Assignment: Review Boolean algebra and

Karnaugh Maps concepts and application to digital logic design

- Notes posted on website

How to design combinational circuit

- Analyze the problem
- Determine inputs and outputs (they must be binary)
- Determine boolean variables
- inputs $\times 1, \times 2, \ldots$
- Outputs y1, y2,...
- Derive truth table
- Value of each yi for each combination of inputs $\mathrm{x} 1, \mathrm{x} 2, \ldots$
- For simple circuit, find DNF from truth table
- To find 'optimal' (minimum size) 2-level circuit, derive Karnaugh map and find terms

Time to test your circuit design\&analysis skills...

Analyze Circuits to derive Boolean functions
Design circuits from truth table/function

- In Cedar Logic: Download and open Set1.cdl in CedarLogic
- Has number of 'pages' of circuits
- In Logisim: Download Set1.zip into folder, it has several Logisim circuits
- Labelled Set1-Page1.circ, Set1-Page2, etc.
- Open in Logisim
- Work through the 6 pages of circuits

Transistor Circuits...Circuits on Page 1,2,3,4....

- Open in Cedar Logic - view Page 1 circuit
- UsefulTip (for CedarLogic): Hit space key to center and maximize the circuit in the cedar logic window
- Circuit on Page 1 is NAND gate (from transistors)
- Inputs: A,B . can be set to 1 (red) or 0 (black) by clicking on them
- Output $\mathrm{C}=1$ if at least one of upper two (switches) close
- This happens when $A=0$ or $B=0$ since it is a P-type transistor
- Output $C=0$ when $A=1$ and $B=1$ since there is a path from C to ground (0) and N type transistor
- Transistors at bottom of page
- N-type: if input is 1 (red) then transistor close (i.e., short circuit)
- P-type: if input is 0 (black) then transistor closed (i.e, short circuit)

Questions...Circuit on Set1-Page2, Page3, Page4

- Page 2: What gate/function is being implemented?
- Can you determine this by analyzing the circuit (instead of deriving truth table)
- Note serial structure in upper two transistors = both must close for a path from Power to output, i.e., for output to be $=1$
- Note parallel structure in lower two transistors = at least one must be closed for a path from Ground (0) to output, i.e., for output $=0$
- Page 3: combination of Page 2 circuit whose output goes to another circuit
- Page 4: What function ? Derive truth table with inputs A, B and 'outputs' C,D, F
- Is this a standard function?

Circuits with logic gates...Set1-Pages 5,6,7,8

- Page 5: example using logic gates
- Input specified using the switches
- Output goes to LED (red=1, black=0)
- To determine the function being implemented by a circuit you can "trace" back from output to inputs

Questons: Pages 6, 7, 8:

- Page 6: what Boolean functions are being implemented by circuits (a) and (b) ?
- Page 7: Draw circuit to implement the function:
- $F=(A$ AND (B XOR C) OR (NOT C))
- Draw by hand first, then implement in simulator
- Page8: Design circuit for truth table shown here

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- Derive function and draw by hand first
- Implement in simulator

Logic control for overhead light

- Design logic for light switch in a room based on the position of two switches - switches are at two different entrances to the room and either switch should be able to change the state (on/off) of the light independently.
- If both switches are in the "down" position (represented by 0) the light must be off (represented by 0)
- No matter what position the switches are in or the current state of the light, flipping either switch must change the state of the light.
- Design gate level circuit
- Complete truth table first

Recall our Goal....

- Design a machine that translates from natural language to electrons running around to solve the problem
- We now have a device that controls how electrons run around
- Next: we want to build a computer
- First step: Design a collection of logic devices that implement important functions that will be needed to build our computer
- S/W Analogy: When you write your software, you are using a collection of concepts, tools, IDEs and libraries
- Each has been built, and tested, for you
- All you have to do is combine them!

Next: Combinational Logic Devices

- We saw how we can build the simple logic gates using transistors
- Can build any boolean function using these gates
- Use these gates as building blocks to build more complex combinational circuits
- Decoder: based on value of n-bit input control signal, select one of 2^{N} outputs
- Multiplexer: based on value of N -bit input control signal, select one of 2^{N} inputs.
- Adder: add two binary numbers
- ...any boolean function
- SW Analogy: We are building a library of functions
- To design your solution, you can use any device in the library!

