Program Performance Part 1: Memory Design

- · "Complexity" of algorithms
- How good/efficient is your algorithm
 Measure using Big-Oh notation: O(N log N)
- Next question : How well is the code executing on the machine ???????
 - · Actual time to run the program
 - Effect of H/W features on SW performance

Performance – what to measure ?

Which of these airplanes has the better performance ?

Plane	DC to Paris	Speed	Passengers	Performance ?
Airbus A380	7.5 hours	730 mph	500	
BAD/Sud Concorde	3 hours	1350 mph	130	

13

formance metric depends on application					
Plane	DC to Paris	Speed	Passengers	Throughput (pmph)	
Boeing 747	7.5 hours	730 mph	500	365,000	
BAD/Sud Concorde	3 hours	1350 mph	130	175,500	

 Passenger miles per hour; how many passengers transported per unit time

14

CPI

- Cycles per instruction: Different instructions may take different time
 - Example in LC 3?
- observe that not every instruction needs to go through all the instruction execution steps
 - Eg: no need to calculate effective address, fetch from memory or registers
- •Reality #1: different times associated with different operations
 - · Especially true of memory operations
- Reality #2: the 'average' CPI depends on the instruction mix in the program
 - · How many ALU operations, how many load/store, etc.
 - Weighted average (since each type takes different no. of cycles)

CPI: Cycles per instruction Depends on the instruction CPI_i = Execution time of instruction *i* / Cycle time Average cycles per instruction $CPI = \sum_{t=1}^{n} CPI_t * F_t$ where $F_t = \frac{IC_t}{IC_{tot}}$ **Example:** CPI_i %time Op Freq Cycles ALU 50% 0.5 33% 1 Load 20% 2 0.4 27% Store 10% 2 0.2 13% 20% 2 Branch 0.4 27% CPI_{total} 1.5

Memory Technology • Random access memory · Can read from any location by supplying address of data This is the model we have been using Other types: sequential access....tapes anyone ? Memory Comes in Many Flavors Main RAM memory Key features • RAM is packaged as a chip. Basic storage unit is a cell (one bit per cell). Multiple RAM chips form a memory. SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory) • ROM, EPROM, EEPROM, Flash, etc. - Non-Volatile Read only memories – store OS • "Secondary memory" Disks, Tapes, Flash etc. Difference in speed, price and "size" • · Fast is small and/or expensive · Large is slow and/or cheap 28

Recall the CPU-Memory Gap The increasing gap between DRAM, disk, and CPU • speeds... 100,000,000 10,000,000 1,000,000 ← Disk seek time 100,000 DRAM access time ns 10,000 SRAM access time * 1,000 - CPU cycle time 100 10 1 1980 1985 1990 1995 2000 year 34

-

