
1

Program Performance
Part 1:
Memory Design

1

2

Course Objectives: Where are we….

•Bits&bytes: Logic devices
• HW building blocks

•Processor: ISA, datapath
• Using building blocks to assemble a processor (LC3)

•Programming the processor: Assembly
•Translating high level programs to Proc

• Implementing C on LC3
•Working with C

• Need fluency in C to get a good understanding of ”systems” topics

2

2

3

Executing High level Programs
•User application written in high level language
•Program runs on a processor

•How are high level programs implemented on processor ?
• Run-time stack, allocation of variables, translation of high level

code to machine code
• Map high level data structures to low level data structures

§ Struct to linear mapping in memory

•What else does software developer want after program is
implemented correctly ?

•PERFORMANCE!

3

4

Next…the end is near !
•Performance of programs

• What to measure
• Model ?
• Technology trends

•Memory organization basics
• Memory hierarchy: cache, main memory, etc.

•How to rewrite your program to make it run faster…code
optimization....Project 6 (i.e, take home exam)

•“real” processors…how to improve performance
• Pipelining, ILP, Multi-core

4

3

5

Technology Trends & Performance
•Speed will depend on clock cycle (frequency) of the circuits

• How fast can we switch the transistors
§ Feed the signal to the gate of MOS transistor, how long for the

transistor to throw the switch
• How large is the transistor – feature size

•Moore’s Law
• Founder of Intel hypothesized on rate of increase in performance

§ It is not a law in the sense of laws of physics, etc.
• Observations: performance doubles every 18 months

§ If you knew this, how would it guide your business decisions?
§ Would you bet on hardware IP or software IP ?

5

0

5

10

15

20

25

30

35

40

650 500 350 250 180 130 100

Feature	Size	(nm)

D
el
ay
	(p
s)

Gate	Delay	(ps)

Interconnect	Delay	(ps)	Cu	&	Low	k

Interconnect	Delay	(ps)	Al	&	SiO2

Tech Trends:
Delay vs. Feature/Transistor Size

2000

Bohr, M. T., “Interconnect Scaling - The Real Limiter To High Performance ULSI”, Proceedings of
the IEEE International Electron Devices, pages 241-242.

6

4

0

200

400

600

800

1000

1200

1400

1600

1997 1999 2001 2003 2006 2009 2012

Year

MPU	Transistors/chip	(M)

DRAM	Bits/chip	(G)

How many Transistors can we pack into
a single Chip

50 pentiums

Big problem with heat dissipation & power

7

8

Tech Trends: Memory Capacity
(Single Chip DRAM)

size

Year

Bi
ts

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns

Memory density is also increasing…
But is it increasing at a fast enough pace ?

8

5

9

The CPU-Memory Gap
• The increasing gap between DRAM, disk, and CPU

speeds…

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

9

10

Performance Trends: Summary
• Workstation performance (measured in Spec Marks)

improves roughly 50% per year (2X every 18 months)
• Performance will include not just processor, but memory and disk I/O

• Improvement in cost performance estimated at 70% per year

10

6

11

Performance of Programs
• “Complexity” of algorithms
• How good/efficient is your algorithm

§ Measure using Big-Oh notation: O(N log N)

• Next question : How well is the code executing on the
machine ???????

• Actual time to run the program
• Effect of H/W features on SW performance

11

12

How to Model Performance
• The asymptotic complexity – “big O”

• Time = O(f(n)) : function of the size of the input
• Sorting O(n log n)
• This measures efficiency of your algorithm

§ i.e., how ‘good’ is solution technique
– Is this enough when we talk of actual time measured on the processor

???
• There’s more to performance than asymptotic complexity

• Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

• Must understand system to optimize performance
• How programs are compiled and executed, data storage, data

structures, I/O management

12

7

13

Performance – what to measure ?

Plane

Airbus
A380

BAD/Sud
Concorde

Speed

730 mph

1350 mph

DC to Paris

7.5 hours

3 hours

Passengers

500

130

Performance ?

Which of these airplanes has the better performance ?

13

14

The Bottom Line:
Performance metric depends on application

• Time to run the task (Execution Time/Response Time/Latency)
– Time to travel from DC to Paris

• Tasks per unit time (Throughput/Bandwidth)
• Passenger miles per hour; how many passengers transported

per unit time

Plane

Boeing 747

BAD/Sud
Concorde

Speed

730 mph

1350 mph

DC to Paris

7.5 hours

3 hours

Passengers

500

130

Throughput
(pmph)

365,000

175,500

14

8

15

•Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

•Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

Metric chosen usually depends on user community: sys admin vs single
user ?

• If we upgrade a machine with a new processor what do we increase?

• If we add a new machine to the cluster/lab what do we increase?

Computer Performance: TIME, TIME, TIME

15

16

•Elapsed Time
• counts everything (disk and memory accesses, I/O , etc.)
• a useful number, but often not good for comparison purposes

•CPU time
• doesn't count I/O or time spent running other programs
• can be broken up into system time, and user time

•Our focus in this course: user CPU time
• time spent executing the lines of code that are "in" our program

Execution Time

16

9

17

Processor time: how to measure ?
•Number of clock cycles it takes to complete the execution of
your program

•What is your program
• A number of instructions

§ Different types: load, store, ALU, branch
• Stored in memory
• Executed on the CPU

17

18

Model for CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU = IC * CPI * Clk

simple but very effective and standard way to measure

18

10

19

The three parameters…who determines them?
• To improve performance, reduce CPU execution time….

• i.e., reduce CPU = IC * CPI * Clk
• Reduction in any one of these will reduce the time and increase perf.

•Clock cycle: depends on semi-conductor (& fabrication)
technology

• How fast can we switch the transistor (how small is transistor)
•CPI: depends on the ISA…and on program/compiler (!!)

• Different operations take different time

•Instruction Count (IC): depends on program and on compiler
• Compiler generates the machine code
• Number of instructions would depend on your algorithm as well as on

compiler and the programming language

19

20

CPI
• Cycles per instruction: Different instructions may take
different time

• Example in LC 3 ?
• observe that not every instruction needs to go through all the
instruction execution steps

• Eg: no need to calculate effective address, fetch from memory or
registers

•Reality #1: different times associated with different operations
• Especially true of memory operations

• Reality #2: the ‘average’ CPI depends on the instruction mix
in the program

• How many ALU operations, how many load/store, etc.
• Weighted average (since each type takes different no. of cycles)

20

11

21

Average CPI
• Application has an “instruction mix”

• Profile of application instruction types
• ALU, Load/Store (memory), Branch, Jumps, etc.
• x1, x2, x3… as percentage (x1=0.4)

• Processor has CPI for each type of instruction
• Part of ISA of a processor….specifications doc
• Example: ALU=1.0 cycle, Load/Store=2.0 cycle, etc.
• t1, t2, t3,…

• What is effective CPI ?
• Weighted average

• CPI = x1*t1 + x2*t2 + ….

21

CPI: Cycles per instruction

• Depends on the instruction

• Average cycles per instruction

• Example:

22

12

23

Improving Performance of processors: …
•Are “real” processors like LC 3?
•Design principles to improve the performance of the
processor ?

• Pipelined processors: overlap execution of instructions
• Superscalar processors: have multiple pipelined execution units
• Multi-threaded processors: execute multiple threads
• Multi-core: executed multiple threads and multiple programs on many

cores/processors on a single chip

• will return to this….

23

24

Improving System Perfomance:
Principles of Computer Architecture Design:
Thumb Rules

•Common case fast
• Focus on improving those instructions that are frequently

used
• Amdahl’s Law

§ Fraction enhanced/optimized runs faster
§ Where to focus optimizations….maximize “returns’

•Principle of Locality:
• program spends 90% of its time in 10% of code

§ Eg: word processing

• Spatial: items near each other tend to be accessed
• Temporal: recently used items tend to be used again

•Concurrency/Parallelism
• Overlap the instruction execution steps

§ Pipeline processors
§ Multi-core processors

24

13

25

Next : Role of Memory organization on
performance

•Key component in von Neumann computer ?
•Memory

•How are “real” memory systems organized ?
• How do they affect performance ?

25

26

Recall – Programmers view of Memory Unit
•An ordered sequence of storage cells, each capable of
holding a piece of data.

• Address space
• Size of memory: N bit address space = 2N memory locations

• Addressability
• Size of each memory location – k bits

• Total memory size = k.2N bits
• Assumption thus far: Processor/CPU gets data or instruction
from some memory address (Inst fetch or Load/Store
instruction)

• Time depends on how is memory actually organized ?
• Can everything we need fit into a memory that is close to the CPU ?

26

14

27

Today’s Memory Systems…CPU and I/O Bus

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

(cloud)

27

28

Memory Technology
• Random access memory

• Can read from any location by supplying address of data
§ This is the model we have been using
§ Other types: sequential access….tapes anyone ?

• Memory Comes in Many Flavors
• Main RAM memory Key features

§ RAM is packaged as a chip.
§ Basic storage unit is a cell (one bit per cell).
§ Multiple RAM chips form a memory.
§ SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access

Memory)

• ROM, EPROM, EEPROM, Flash, etc. – Non-Volatile
§ Read only memories – store OS

• “Secondary memory” Disks, Tapes, Flash etc.
• Difference in speed, price and “size”

• Fast is small and/or expensive
• Large is slow and/or cheap

28

15

29

Typical Bus Structure Connecting
CPU and Memory
• A bus is a collection of parallel wires that carry address,

data, and control signals.
• Buses are typically shared by multiple devices.

main
memory

I/O
bridgebus interface

ALU

register file

CPU chip

system bus memory bus

29

30

Memory Read Transaction

ALU

register file

bus interface
A 0

Ax

main memory
I/O bridge

R0

Load operation: Load R0, A
or in Intel: movl A, R0

1. CPU places address A on memory bus

2. main memory reads A from bus, retrieves
word x, and places it on bus
3. CPU reads word x from the bus and
copies it into register

30

16

31

Reality…Memory access

31

32

I/O Bus

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

32

17

33

What happens if not found in main memory
…read from Disk

•

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Data not found in memory

33

34

Recall the CPU-Memory Gap
• The increasing gap between DRAM, disk, and CPU

speeds…

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

34

18

35

Link to Performance?
• CPU time = IC * CPI * Clk

• So what is the CPI for a memory access
• Load/Store of data or
• Instruction fetch

• Simplified model:

• Processor is (1) in execution or (2) waits for memory
§ “effective”(Real) CPI increases

• execution time = (execution cycles + memory stall cycles) * cycle
time

35

36

Memory Access time and Performance ?
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU = IC * CPI * Clk

•How does memory access time fit into CPU time equation ?
•More stall cycles = increase in CPI

36

19

37

Summarize CPU & Memory Interaction

•Many types of memory with different speeds
•Processor speed and memory speed mismatched

• Data transferred between memory and processor
§ Instructions or data

•What does processor do while waiting for data to be
transferred ?

• Idle – processor is stalled leading to slowdown in speed and lower
performance

•Why can’t we have memory as fast as processor
• Technology, cost, size

•What is the solution then ?

37

38

Memory Hierarchies
• Organize memory as a memory hierarchy.

• Key Principles
• Locality – most programs do not access code or data uniformly
• Smaller hardware is faster

• Goal
• Design a memory hierarchy “with cost almost as low as the cheapest

level of the hierarchy and speed almost as fast as the fastest level”
§ This implies that we be clever about keeping more likely used data as

“close” to the CPU as possible
• Levels provide subsets

• Anything (data) found in a particular level is also found in the next
level below.

• Each level maps from a slower, larger memory to a smaller but faster
memory

• Why does this work….principle of locality

38

20

Items on a desktop (register) or in a drawer (cache) are more readily accessible
than those in a file cabinet (main memory) or in a closet in another room

keep more frequently accessed items on desktop, next frequent in drawer, etc.
and things you need a lot less often in the closet in another room!

“Memory Hierarchy”

39

40

Why does this work: Key Concept – Locality

• Principle of Locality:
• Programs tend to reuse data and instructions near those they

have used recently, or that were recently referenced themselves.
• Temporal locality: Recently referenced items are likely to be

referenced in the near future.
§ Nearby in time

• Spatial locality: Items with nearby addresses tend to be
referenced close together in time.
§ Nearby in space

40

21

41

Locality: Example

• Data
– Reference array elements in succession

(stride-1 reference pattern):
– Reference sum each iteration:

• Instructions
– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n;
i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

41

42

Today’s Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks, SSD)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

42

22

43

Another look at Performance equation:
Simplified Goal ?

• CPU execution time = IC * CPI * Clock
• More stall cycles = more time

• Improve performance = decrease stall cycles
• Decrease time to access memory
• How ?

§ Organize memory as a hierarchy!
§ Most of the time you should access data in the fastest memory
§ Why does it work – principle of locality of programs

43

Program Performance
Part 2:
Cache Memory Design

44

23

45

Next: Design of Memory Hierarchy
• Focus on Cache design

• Brief overview of cache design
§ How does Cache memory work ?
§ How are addresses mapped to Cache

– Can we design a circuit to implement cache memory control ?

• How to rewrite code to get better cache performance: code
optimization

45

46

Why Cache ?
•Gap between main memory speed and processor speed

• Reading data/inst from memory will take more than 1 processor cycle
§ Increases time to execute program

•What ?: Place a small but fast memory close to the processor
•How?: Why does this work

• Principle of Locality

46

24

47

Cache and Main Memory

47

48

Simple Model of Memory Hierarchy. . .
•Sequence of addresses

• How many ?
•CPU generates request for memory location – i.e., an address

• How long does it take to get this data ?
§ Depends where it is in the Memory hierarchy

•Simplified Model for memory hierarchy:
• small amount of Fast On-chip Cache memory
• Larger amount of off-chip Main memory
• Huge Disk

48

25

49

How does Cache memory work ?
•Address space = 2N words each of some size K bits

• N bit address
•Memory addresses go from 0 to 2N-1

• These are the addresses that the processor requests in the Load or
Store instructions, or when fetching a new instruction (value in PC)

•Some of these memory locations are placed in the cache
• If you see it in the cache then don’t need to go all the way to memory

to read them
§ Faster time to read/write inst/data!

49

50

Memory Access times
•memory access time

• On-chip Cache takes 1 processor cycle
• Main memory takes a number (10-50) processor cycles
• Disk takes a huge amount

•Simple model we will use:
• Memory = Cache + Main memory
• Small size Cache = not everything fits in it

•Cache organization:
• Cache consists of a set of blocks each of some number of bytes
• Only a block can be fetched into and out of cache
• Eg; if block is 16 bytes, then load 16 bytes into cache

§ Cannot load a single byte

•

50

26

51

Memory Access times using Simplified Model
•If data is found in Cache then time =1

• Called a cache hit
•Else time is Main memory access time

• Cache miss, means read from next level
•Note: need a ‘control unit’ to determine if location is in cache
or not

• Cache controller
•Why does concept of caching work ?

• Principle of Locality
§ Programs access data nearby, or data/instructions that were used

recently

51

52

Terminology Summary

• Hit: data appears in block in upper level (i.e. block X in cache)
• Hit Rate: fraction of memory access found in upper level
• Hit Time: time to access upper level which consists of

§ RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieved from a block in the lower level (i.e.
block Y in memory)
• Miss Rate = 1 - (Hit Rate)
• Miss Penalty: Extra time to replace a block in the upper level +

§ Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on Alpha 21264)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

52

27

53

Memory Hierarchy--Performance
• Placing the fastest memory near the CPU can result in

increases in performance
• Consider the number of cycles the CPU is stalled

waiting for a memory access: memory stall cycles
• CPU execution time =

(CPU clk cycles + Memory stall cycles) * clk cycle time.
• Memory stall cycles = number of misses * miss

penalty
• Fewer misses in cache = better performance!

53

54

Average Memory Access Time

• Hit time: basic time of every access.
• Always look to check if data is in cache

• Hit rate (h): fraction of access that hit
• usually substituted by miss rate m = (1-h)

• Miss penalty: extra time to fetch a block from lower level,
including time to replace in CPU
• Access time to read/write to memory module

§ Can extend the same equation to disks/networks

AMAT = HitTime + (1 - h) x MissPenalty

54

28

55

Example 1
•System = Processor, Cache, Main Memory

• Cache time = 1 processor cycle
• Memory access time = 50 processor cycles

•Suppose out of 1000 memory accesses (due to Load/Store
and Inst fetch)

• 40 misses in the cache
§ 960 hit in the Cache

• Miss ratio m = (1-h) = 40/1000 = 4%
•Average memory access time with and without cache ?

55

56

Example. .
•Average memory access time with and without cache ?
•AMAT-cache = 1 + miss ratio * miss penalty

• 1+ (0.04)*50 = 3
•AMAT-without-cache = 50
•What happens if miss ratio increases ?

56

29

57

Cache Memory Hardware Design
•Main memory has 2N locations
•Cache has 2k locations

• Smaller than main memory
• How to “organize” these cache locations ?

•Processor generates N bit address
•The Cache Controller hardware must look at this N bit
address and decide (a) if it is in cache and (b) where to place
it in cache ?

57

58

Cache Memory Design: Definitions
• Cache has a total size – number of bytes in cache
• Transfers take place in blocks

• A whole block is transferred between memory and cache
• Locating a block requires two attributes:

• Size of block
• Organization of blocks within the cache

• Block size (also referred to as line size)
• Smallest usable block size is the natural word size of the processor

§ Else would require splitting an access across blocks and slows down translation

58

30

59

Memory viewed as blocks

•If cache block size = K bytes, then memory can be viewed as contiguous
set of blocks each of size K

16 byte
memory

16 byte memory,
With 4 byte sized

Cache blocks;
4 blocks of memory

59

60

Cache/Main Memory Structure

60

31

61

Where can a block be placed in a cache?-Cache
Organization
• If each block has only one place it can appear in the cache,

it is said to be “direct mapped”
• mapping is usually (Block address) MOD (Number of blocks in the

cache)
• If a block can be placed anywhere in the cache, it is said to

be fully associative
• If a block can be placed in a restrictive set of places in the

cache, the cache is set associative.
• A set is a group of blocks in the cache. A block is first mapped onto

a set, and then the block can be placed anywhere within that set.
(Block address) MOD (Number of sets in the cache)
if there are n blocks in a set, the cache is called n-way set
associative

61

Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fully Associative Direct Mapped Set Associative

Set 0 Set 1 Set 2 Set 3

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9…..

Cache:

Memory: 12

What if next block needed is block 4 ?

62

32

63

• Note: Time to find data is the hit time: affects performance
• Processor generates address request – some N bit address
• Two questions:

• 1. How do we know if a data item is in the cache?
• 2. If it is, how do we find it? .. In which cache block do we look

• Answer: We need mapping from memory Addresses to
Cache blocks

• Addressing: How to break up N bits of address into fields so
a cache controller can easily determine if the address
requested is already stored in cache ?

• Time to determine this “mapping” is the hit time….
§ So need to design fast hardware circuit to implement this

mapping!

Cache Design: How is data found in Cache?

63

64

Designing a Cache Controller

• we described how a cache should be organized
• Work with direct mapped caches

• how complex is a cache controller ?

• Question: can you leverage your H/W design knowledge to
build/design a cache controller ?

64

33

65

Cache Design 1: Addressing.
•Focus on Direct mapped:

• How to implement N Mod.P where P=2K
§ look at K bits from any N bit word, and map words with same

values in the K bits !!!
§ Ex: K=2, N=8

– 1110101 mod 4 = 1
– 1110110 mod 4 = 2

• Question: Given N bit address,
• How to determine which cache block to map the address – index bits
• How to determine which of the words is the one in memory – tag bits
• Since we are working with blocks, how to find the specific word within

the block – offset bits
• N bit address is broken into these 3 fields!

§ N bit address: [tag][index][offset]
• Recall: Memory is viewed as a collection of blocks (size is cache

block size) since we have to transfer an entire cache block

65

66

Cache Design 1: Addressing.
•Focus on Direct mapped:

• How to implement N Mod.P where P=2K
§ look at K bits from any N bit word, and map words with same

values in the K bits !!!
§ Ex: K=2, N=8

– 1110101 mod 4 = 1
– 1110110 mod 4 = 2

• Question: Given N bit address,
• How to determine which cache block to map the address – index bits
• How to determine which of the words is the one in memory – tag bits
• Since we are working with blocks, how to find the specific word within

the block – offset bits
• N bit address is broken into these 3 fields!

§ N bit address: [tag][index][offset]
• Recall: Memory is viewed as a collection of blocks (size is cache

block size) since we have to transfer an entire cache block

66

34

67

Example

Memory

Cache

Block

(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)
(16,17,18,19)

Addresses
In each block

4 bytes in
each block
Addresses:

(0,1,2,3)

Block 0

Block 1
Block 2

Block 3

Block 4
Cache block 0
Cache block 1
Cache block 2
Cache block 3

67

68

Example
Memory

Cache

Mem Block 4

Memory block 0
Memory block 1
Memory block 2
Memory block 3
Memory block 4
Memory block 5
Memory block 6

Cache block 0
Cache block 1
Cache block 2
Cache block3

Mem Block 1

Mem Block 6

Mem Block 3

4 Cache blocks
Mem Block x maps into
cache block (y mod 4)

68

35

69

Addressing -- Example

•8 bit address
• Byte addressability; 28= 256 bytes

•4 byte cache blocks
• Each cache block has 4 bytes
• Therefore main memory 256 bytes divided into 64 blocks

•Total size of cache = 16 bytes
• 4 blocks, each of 4 bytes

•Into which cache block do we place address 01101101
•How do we know which block from memory is in the cache
block ?

• Is it 01101101 or 11001101

69

70

Addressing -- Example
•8 bit address

• Byte addressability & 256 bytes in memory
•4 byte cache blocks

• Each cache block has 4 bytes = need 2 bits to specify which byte
within the block

• 4 bytes in each block – memory is 256/4= 64 blocks
•Total size of cache = 16 bytes

• 4 blocks in cache = apply Modulo 4 mapping
•Into which cache block do we place 01101101

• Last two LSB are offset within a block
• Next 2 LSB are modulo 4 and specify cache block

•How do we know which block from memory is in the cache
block ?

• Is it 01101101 or 11001101

70

36

71

Addressing -- Example
•The three fields are:

• Tag: the 4 most significant bits
§ Tell you which of the memory blocks are in the cache

• Offset (block offset): the 2 least significant bits
§ Gives the address within the cache block

• Index: the remaining 2 bits
§ Tells you into which cache block a memory address is placed

•In general: For N bit address: if each cache block (size) is 2K
bytes, and total cache memory size is 2j blocks (i.e, 2j+k bytes)

• Tag of (N-k-j) bits: the most significant bits
• Offset of K bits: the least significant k bits
• Index of j bits

•Memory block M gets placed in cache block (M mod(2j).
• M is (N-k) most significant bits

71

72

So how complex is the hardware required ?
•Given N bit address, the cache controller needs to determine
if the requested word is in cache or not

• If not, then send the address to the memory bus
•This process has to be built into hardware

• Complexity of the circuit determines time taken to determine if word is
in cache
§ Hit time is function of complexity of circuit

• For direct mapped, can you think of a hardware design ?

72

37

73

Finding cache block: implement mod 2j function
•Given the N bits of address with the three fields of tag, index,
offset, how do you find the cache block ?

• 01101101
• mod 4 (mod 2j where 2j is number of cache blocks)

•Given j bits of index, one of these is selected…
• Ex: for 2 index bits:

§ If index bits=00 then select/enable cache block 0
§ If index bits =01 then cache block 1
§ If index bits =10 then cache block 2
§ If index bits =11 then cache block 3

• what logic device implements this ?
•Decoder!

73

74

Finding word within a block
• Following four addresses are all in one block
• 01101100
• 01101101
• 01101110
• 01101111

• Example: if address if 01101101 then we have to find/fetch that one
byte from among the four in the block

• How do you select one of these four..what is the logic device?

• Multiplexer !

74

38

75

Matching the tag of a memory block
• Number of memory blocks could all be mapped to the same cache

block
• Following two will get mapped to same block
• 01101101
• 01111101

• You are searching to see if 01101101 is in the cache…..
• Suppose we stored the tag of the block for each cache block (in the

cache controller)
• How do you check if cache contains this block with tag 0110 ?..what is

the logic device ?
• Comparator

75

76

Cache Controller for Direct Mapped Caches

tag idx b.o.

=
Tag

match
Multiplexor

de
co

de
r

=
Tag

Match

de
co

de
r

tag index

block index

76

39

77

Performance Impact of cache parameters
• Cache performance is related to cache design

• Size of cache, size of each block, organization

• Two ways of improving performance:
• decreasing the miss ratio
• decreasing the miss penalty

• More techniques:
• Pre-fetching
• Compiler directed pre-fetching

77

78

Summary: Memory Access time optimization
•If each access to memory leads to a cache hit then time
to fetch from memory is one cycle

• Program performance is good!
•If each access to memory leads to a cache miss then
time to fetch from memory is much larger than 1 cycle

• Program performance is bad!
•Design Goal:
How to arrange data/instructions so that we have as few
cache misses as possible.

• How about rewriting the code to improve the cache hit
rates ?

• This is part of what code optimization accomplishes!!

78

40

79

Quick Look at Secondary Memory (Disks) and
Virtual Memory

79

80

The Complete memory hierarchy
•Processor has a set of registers

• Processor instructions operate on contents in the registers
•Small, fast cache memory placed near the processor
•Main memory sitting outside the chip

• If data is not in the cache then fetch from main memory
• Takes longer to access main memory than cache

•Disk sitting outside the motherboard
• If data/program not in main memory then fetch/load from disk
• Takes much longer to access disk than main memory

• remote/network storage sitting on the network
• Takes significantly more time to fetch data…but huge storage

capacity

80

41

81

Secondary Memory
•CPU generates request, N bit address, to fetch from memory
•What happens if main memory (chip capacity) is less than 2N

•Data and programs may be stored in a non-volatile
component

• MS-Word executable is on disk
• Your application data

•What happens if more than one process is running on the
system

• Multiprogramming
• What is the address space available to each user ?

•Need to use Secondary memory (Disk drive) !

81

82

Reading a Disk Sector (1)

•

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

82

42

83

Reading a Disk Sector (2)

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

83

84

Reading a Disk Sector (3)

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

84

43

85

What is multiprogramming and Why ?
•Processor overlaps execution of two processes/programs

• When one is waiting for I/O, the other is “swapped” in to the processor
§ Save the “state” of the process being swapped out

•Processes need to share memory
• Each has its own address space

•Leads to better throughput and utilization

85

86

Last step: Virtual Memory
•N bit address space…
•If word is not in main memory then it is on disk – need a
controller to manage this ..analogous to cache controller

• Virtual memory management system
•Note: transfers take place from disk in “blocks” of M bytes
(sector) – page of data

•Memory consists of a number of pages
• Determine if the page is in main memory or not

•N bit address broken into fields which determine page
number, and whether page is in the memory or disk

•If page size is 1024 bits…how to organize the N bit address
??

86

44

87

Virtual Memory
• Main memory can act as a cache for the secondary storage (disk)

• Advantages:
• illusion of having more physical memory
• program relocation
• protection

Virtual addresses Physical addresses
Address translation

Disk addresses

87

88

The
imag
e part
with
relati
onshi
p ID
rId3
was
not
found
in the
file.

The
imag
e part
with
relati
onshi
p ID
rId3
was
not
found
in the
file.

Mapping Virtual Memory to Physical Memory

0

Physical Memory

¥Virtual Memory

The
imag
e part
with
relati
onshi
p ID
rId3
was
not
found
in the
file.

64 MB

•Divide Memory into equal sized
“chunks” (say, 4KB each)

0

• Any chunk of Virtual Memory assigned to
any chunk of Physical Memory (“page”)

Stack

Heap

Static

Code

Single
Process

88

45

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it
from disk
• huge miss penalty, thus pages should be fairly large (e.g.,

4KB)
• reducing page faults is important (LRU is worth the price)
• can handle the faults in software instead of hardware
• using write-through is too expensive so we use writeback

• Once again, program locality plays a key role in
performance !!

• More on virtual memory….operating systems!

89

90

How do disks works?
Disk Geometry
• Disks consist of platters, each with two surfaces.
• Each surface consists of concentric rings called tracks.
• Each track consists of sectors separated by gaps.

spindle

surface
tracks

track k

sectors

gaps

90

46

91

Disk Geometry (Muliple-Platter View)
• Aligned tracks form a cylinder.

surface 0
surface 1
surface 2
surface 3
surface 4
surface 5

cylinder k

spindle

platter 0

platter 1

platter 2

91

92

Disk Operation (Single-Platter View)
•

The disk
surface
spins at a fixed
rotational rate

spindle

By moving radially, the arm
can position the read/write
head over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air.

spindle

spindle

sp
in

dl
e

spindle

92

47

93

Disk Access Time
• Average time to access some target sector approximated by :

• Taccess = Tavg seek + Tavg rotation + Tavg transfer
• Seek time (Tavg seek)

• Time to position heads over cylinder containing target sector.
• Typical Tavg seek = 9 ms

• Rotational latency (Tavg rotation)
• Time waiting for first bit of target sector to pass under r/w head.
• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Transfer time (Tavg transfer)
• Time to read the bits in the target sector.
• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

93

94

Accessing a Disk Page

•Time to access (read/write) a disk block:
• seek time (moving arms to position disk head on track)
• rotational delay (waiting for block to rotate under head)
• transfer time (actually moving data to/from disk surface)

•Seek time and rotational delay dominate.

•Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

94

48

95

Placement of Data on Disk
•Placement of data on disk can affect performance of program
•Example: If you are reading an entire array, then:

• place the data in consecutive disk blocks
• seek time to get first disk block
• Remaining blocks will incur no seek time

§ Time = T_seek + N(T_transfer + T_rot)

• Naïve approach: N (T_seek + T_transfer + T_rot)
• Speedup: N*T_seek ~ O(N)

95

96

Logical Disk Blocks
• Modern disks present a simpler abstract view of the

complex sector geometry:
• The set of available sectors is modeled as a sequence of b-sized

logical blocks (0, 1, 2, ...)
• Mapping between logical blocks and actual (physical)

sectors
• Maintained by hardware/firmware device called disk controller.
• Converts requests for logical blocks into (surface,track,sector) triples.

• Allows controller to set aside spare cylinders for each zone.
• Accounts for the difference in “formatted capacity” and “maximum

capacity”.

96

