Program Performance
Part 1:
Memory Design

Course Objectives: Where are we....

*Bits&bytes: Logic devices
* HW building blocks

*Processor: ISA, datapath
* Using building blocks to assemble a processor (LC3)

*Programming the processor: Assembly

*Translating high level programs to Proc
* Implementing C on LC3
*Working with C
* Need fluency in C to get a good understanding of "systems” topics

Executing High level Programs

*User application written in high level language
*Program runs on a processor

*How are high level programs implemented on processor ?

* Run-time stack, allocation of variables, translation of high level
code to machine code

* Map high level data structures to low level data structures
= Struct to linear mapping in memory

*What else does software developer want after program is
implemented correctly ?

*PERFORMANCE!

Next...the end is near!

*Performance of programs
+ What to measure
* Model ?
» Technology trends
*Memory organization basics
* Memory hierarchy: cache, main memory, etc.
*How to rewrite your program to make it run faster...code
optimization....Project 6 (i.e, take home exam)

*“real” processors...how to improve performance
* Pipelining, ILP, Multi-core

Technology Trends & Performance

*Speed will depend on clock cycle (frequency) of the circuits
» How fast can we switch the transistors
= Feed the signal to the gate of MOS transistor, how long for the
transistor to throw the switch
* How large is the transistor — feature size
*Moore’s Law
» Founder of Intel hypothesized on rate of increase in performance
= |tis not a law in the sense of laws of physics, etc.
» Observations: performance doubles every 18 months
= |f you knew this, how would it guide your business decisions?
= Would you bet on hardware IP or software IP ?

Tech Trends:
Delay vs. Feature/Transistor Size

40

35

—5— Gate Delay (ps)

2000

~*— Interconnect Delay (ps) Cu & Low k

25
—— Interconnect Delay (ps) Al & Si02 E /

e

Delay (ps)

650 500 350 250 180 130 100
Feature Size (nm]

Bohr, M. T., “Interconnect Scaling - The Real Limiter To High Performance ULSI”’, Proceedings of
the IEEE International Electron Devices, pages 241-242.

How many Transistors can we pack into
a single Chip

1600

1400

1200

1000

—=— MPU Tra

nsistors/chip (M)

—— DRAM Bits/chip (G)

800

600

400

50

pentiums

/

200

L

-

1999

2001

2003
Year

2006

2009 2012

Big problem with heat dissipation & power

Tech Trends: Memory Capacity
(Single Chip DRAM)
Memory density is also increasing...
But is it increasing at a fast enough pace ?

size

1000000000

100000000

10000000 4—

1000000

100000 =

10000 4

1000

1970

1975

1980 1985 1990 1995

Year

2000

year
1980
1983
1986
1989
1992
1996
2000

size(Mb)
0.0625
0.25
1
4
16
64
256

cyc time
250 ns
220 ns
190 ns
165 ns
145 ns
120 ns
100 ns

The CPU-Memory Gap
» The increasing gap between DRAM, disk, and CPU

speeds...

100,000,000
10,000,000

|

1,000,000

100,000
2 10,000

1,000
100

—o— Disk seek time
DRAM access time

—A— SRAM access time

—8— CPU cycle time

10

Nﬁ

1

1980

1985

1990
year

1995 2000

Performance Trends: Summary

» Workstation performance (measured in Spec Marks)
improves roughly 50% per year (2X every 18 months)
» Performance will include not just processor, but memory and disk 1/0

* Improvement in cost performance estimated at 70% per year

10

10

Performance of Programs

* “Complexity” of algorithms

» How good/efficient is your algorithm
= Measure using Big-Oh notation: O(N log N)

* Next question : How well is the code executing on the

» Actual time to run the program
 Effect of H/W features on SW performance

1

11

How to Model Performance

» The asymptotic complexity — “big O”
» Time = O(f(n)) : function of the size of the input
» Sorting O(nlog n)
» This measures efficiency of your algorithm

= j.e., how ‘good’ is solution technique
— Is this enough when we talk of actual time measured on the processor
7?7
» There’s more to performance than asymptotic complexity

+ Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

* Must understand system to optimize performance

* How programs are compiled and executed, data storage, data
structures, I/O management

12

12

Performance — what to measure ?

Which of these airplanes has the better performance ?

Plane DC to Paris | Speed Passengers | Performance ?
Airbus
A380 7.5 hours 730 mph 500

BAD/Sud | 4\ | 1350 mph 130

Concorde

13

13

The Bottom Line:
Performance metric depends on application

Plane DC to Paris | Speed Passengers UL
(pmph)
Boeing 747 | 7.5 hours 730 mph 500 365,000
BAD/Sud | 5\ < | 1350 mph 130 175,500
Concorde

» Time to run the task (Execution Time/Response Time/Latency)

— Time to travel from DC to Paris

» Tasks per unit time (Throughput/Bandwidth)

» Passenger miles per hour; how many passengers transported

per unit time

14

14

Computer Performance: TIME, TIME, TIME

*Response Time (latency)

— How long does it take for my job to run?

— How long does it take to execute a job?

— How long must | wait for the database query?
* Throughput

— How many jobs can the machine run at once?

— What is the average execution rate?

— How much work is getting done?

Metric chosen usually depends on user community: sys admin vs single
user ?

«If we upgrade a machine with a new processor what do we increase?

« If we add a new machine to the cluster/lab what do we increase?

15
15
Execution Time
*Elapsed Time
» counts everything (disk and memory accesses, I/O, etc.)
« a useful number, but often not good for comparison purposes
*CPU time
+ doesn't count I/O or time spent running other programs
» can be broken up into system time, and user time
*Our focus in this course: user CPU time
+ time spent executing the lines of code that are "in" our program
16

16

Processor time: how to measure ?

*Number of clock cycles it takes to complete the execution of
your program
*What is your program
* A number of instructions
= Different types: load, store, ALU, branch
» Stored in memory
» Executed on the CPU

17

17

Model for CPU Performance

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU =IC * CPI * Clk

simple but very effective and standard way to measure

18

18

The three parameters...who determines them?

» To improve performance, reduce CPU execution time....
* i.e.,reduce CPU =IC * CPI * Clk
* Reduction in any one of these will reduce the time and increase perf.

*Clock cycle: depends on semi-conductor (& fabrication)
technology
» How fast can we switch the transistor (how small is transistor)
*CPI: depends on the ISA...and on program/compiler ()
« Different operations take different time

eInstruction Count (IC): depends on program and on compiler
» Compiler generates the machine code

* Number of instructions would depend on your algorithm as well as on

compiler and the programming language
19

19

CPI

* Cycles per instruction: Different instructions may take
different time
* Examplein LC 3 ?
* observe that not every instruction needs to go through all the
instruction execution steps

» Eg: no need to calculate effective address, fetch from memory or
registers

*Reality #1: different times associated with different operations
» Especially true of memory operations
* Reality #2: the ‘average’ CPI depends on the instruction mix
in the program
* How many ALU operations, how many load/store, etc.
* Weighted average (since each type takes different no. of cycles)

20

20

10

Average CPI

* Application has an “instruction mix”
* Profile of application instruction types
» ALU, Load/Store (memory), Branch, Jumps, etc.
* X4, Xo, X3... @S percentage (x1=0.4)

* Processor has CPI for each type of instruction

» Part of ISA of a processor....specifications doc

» Example: ALU=1.0 cycle, Load/Store=2.0 cycle, etc.

* t1, t2, t3,...
* What is effective CPI ?
* Weighted average

« CPI= X1*t1 + X2*t2 + ...

21
21
CPI: Cycles per instruction
* Depends on the instruction
CPI, = Execution time of instruction i / Cycle time
* Average cycles per instruction
n i I(
CPI =) CPI*F, where F,=—2"
=1 ol
* Example:
Op Freq Cycles = CPl; %time
ALU | 50% 1 0.5 33%
Load | 20% 2 0.4 | 27%
Store | 10% 2 02 13%
Branch 20% 2 04 27%
CPlow | 1.5
22

11

Improving Performance of processors: ...
*Are “real” processors like LC 37?
*Design principles to improve the performance of the
processor ?
 Pipelined processors: overlap execution of instructions
» Superscalar processors: have multiple pipelined execution units

» Multi-threaded processors: execute multiple threads

» Multi-core: executed multiple threads and multiple programs on many
cores/processors on a single chip

 will return to this....

23
23
Improving System Perfomance:
Principles of Computer Architecture Design:
Thumb Rules
*Common case fast
* Focus on improving those instructions that are frequently
used
 Amdahl’s Law
= Fraction enhanced/optimized runs faster
= Where to focus optimizations....maximize “returns’
Principle of Locality:
» program spends 90% of its time in 10% of code
= Eg: word processing
» Spatial: items near each other tend to be accessed
» Temporal: recently used items tend to be used again
*Concurrency/Parallelism
» Overlap the instruction execution steps
= Pipeline processors
= Multi-core processors 24
24

12

Next : Role of Memory organization on
performance

*Key component in von Neumann computer ?
*Memory

Memory

*How are “real” memory systems organized ?
* How do they affect performance ?

25

25

Recall — Programmers view of Memory Unit

*An ordered sequence of storage cells, each capable of
holding a piece of data.
» Address space
+ Size of memory: N bit address space = 2N memory locations
» Addressability
» Size of each memory location — k bits
« Total memory size = k.2N bits
» Assumption thus far: Processor/CPU gets data or instruction
from some memory address (Inst fetch or Load/Store
instruction)
» Time depends on how is memory actually organized ?
» Can everything we need fit into a memory that is close to the CPU ?

26

26

13

Today’s Memory Systems...CPU and I/O Bus

CPU chip

register file

: ALU

: system bus memory bus

bus interface <:> Vo <:> main
bridge memory

\ ﬁ? (cloud)
< \ 0>
/O bus Expansion slots for
other devices such

usB graphics disk as network adapters.
controller adapter controller
mousekeyboard monitor —

27

Memory Technology

« Random access memory
+ Can read from any location by supplying address of data
= This is the model we have been using
= Other types: sequential access....tapes anyone ?

* Memory Comes in Many Flavors

* Main RAM memory Key features
RAM is packaged as a chip.

Basic storage unit is a cell (one bit per cell).
Multiple RAM chips form a memory.

SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access
Memory)

+ ROM, EPROM, EEPROM, Flash, etc. — Non-Volatile

= Read only memories — store OS
» “Secondary memory” Disks, Tapes, Flash etc.
 Difference in speed, price and “size”
» Fast is small and/or expensive
» Large is slow and/or cheap

28

28

14

Typical Bus Structure Connecting

CPU and Memory
* Abus is a collection of parallel wires that carry address,

data, and control signals.
* Buses are typically shared by multiple devices.

CPU chip

register file

: : ALU
system bus memory bus

bus interface Vo main
bridge memory

29

Memory Read Transaction
1. CPU places address A on memory bus

2. main memory reads A from bus, retrieves
word X, and places it on bus

3. CPU reads word x from the bus and
copies it into register

register file Load operation: Load R0, A
or in Intel: movl A, RO
RO : ALU
main memory
1/0 bridge A 1]
bus interface R 4 X A
<

30

Reality...Memory access

31

31

1/0 Bus

CPU chip

register file

IC

=

ALU

system bus

memory bus

l

/0
bridge

main
memory

{}

T

bus interface <:>

usB graphics
controller adapter
mouse keyboard monitor

1/0 bus

disk

controller

Expansion slots for
other devices such
as network adapters.

32

32

16

What happens if not found in main memory

...read from Disk
CPU chip

° register file

a ALU

IC

Data not found in g

AN
bus interface \'—‘/I_

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

aiory

ain
memory

T vom

S0

usB graphics
controller adapter

mouse keyboard monitor

T

disk
controller

I

33
33
Recall the CPU-Memory Gap
* The increasing gap between DRAM, disk, and CPU
speeds...
100,000,000 N
10,000,000 D
1,000,000
100,000 —&— Disk seek time
@ 10,000 —=— DRAM access time
1.000 - —A— SRAM access time
’100 | %I - —8— CPU cycle time
10
1 T T \'\l.\‘ —
1980 1985 1990 1995 2000
year
34

34

17

Link to Performance?
« CPUtime=IC *CPI* Clk

» So what is the CPI for a memory access
« Load/Store of data or
« Instruction fetch

» Simplified model:

* Processoris (1) in execution or (2) waits for memory
= “effective”’(Real) CPI increases

» execution time = (execution cycles + memory stall cycles) * cycle
time

35

35

Memory Access time and Performance ?
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU=IC * CPI * Clk

eHow does memory access time fit into CPU time equation ?
eMore stall cycles = increase in CPI

36

36

18

Summarize CPU & Memory Interaction

*Many types of memory with different speeds

*Processor speed and memory speed mismatched

» Data transferred between memory and processor
= Instructions or data

*What does processor do while waiting for data to be
transferred ?

* |dle — processor is stalled leading to slowdown in speed and lower
performance

*Why can’t we have memory as fast as processor
» Technology, cost, size
*What is the solution then ?

37

37

Memory Hierarchies
* Organize memory as a memory hierarchy.

* Key Principles
» Locality — most programs do not access code or data uniformly
» Smaller hardware is faster

+ Goal

+ Design a memory hierarchy “with cost almost as low as the cheapest
level of the hierarchy and speed almost as fast as the fastest level”

= This implies that we be clever about keeping more likely used data as
close”to the CPU as possible

* Levels provide subsets

» Anything (data) found in a particular level is also found in the next
level below.

» Each level maps from a slower, larger memory to a smaller but faster
memory

Why does this work....principle of locality

38

38

19

“Memory Hierarchy”

P= Access cabinet
- | in30s

. Access
= Register file desktop in 2 s

Main memory

Access drawer
in5s

Cache
memory

Items on a desktop (register) or in a drawer (cache) are more readily accessible
than those in a file cabinet (main memory) or in a closet in another room
keep more frequently accessed items on desktop, next frequent in drawer, etc.
and things you need a lot less often in the closet in another room!

39

Why does this work: Key Concept — Locality

* Principle of Locality:
* Programs tend to reuse data and instructions near those they
have used recently, or that were recently referenced themselves.
» Temporal locality: Recently referenced items are likely to be
referenced in the near future.
= Nearby in time
» Spatial locality: Items with nearby addresses tend to be
referenced close together in time.
= Nearby in space

40

40

20

Locality: Example

sum = 0;
for (i = 0; i < n;
i++)

sum += a[i];
return sum;

+ Data
—Reference array elements in succession

(stride-1 reference pattern): Spatial locality
—Reference sum each iteration: Temporal locality

+ Instructions)]
—Reference instructions in sequence: Spatial locality
—Cycle through loop repeatedly: Temporal locality

41
41
y .
Today’s Memory Hierarchy
y
Smaller,
faster, CPU registers hold words retrieved
and from L1 cache.
costlier L1:/ on-chip L1
(per byte) cache (SRAM) L1 cache holds cache lines retrieved
storage i from the L2 cache memory.
devices L2: off-chip L2
cache (SRAM) L2 cache holds cache lines
retrieved from main memory.
L3: main memory
Larger, (DRAM)) _
I Main memory holds disk
slower, blocks retrieved from local
and disks.
cheaper L4: local secondary storage
(per byte) (local disks, SSD)
storage Local disks hold files
devices retrieved from disks on
remote network servers.
L5: remote secondary storage
d (distributed file systems, Web servers)
42

42

Another look at Performance equation:
Simplified Goal ?

+ CPU execution time = IC * CPI * Clock

* More stall cycles = more time

* Improve performance = decrease stall cycles
* Decrease time to access memory
* How?
= Organize memory as a hierarchy!
= Most of the time you should access data in the fastest memory
= Why does it work — principle of locality of programs

43

Program Performance
Part 2:
Cache Memory Design

22

Next: Design of Memory Hierarchy

» Focus on Cache design
+ Brief overview of cache design
= How does Cache memory work ?
= How are addresses mapped to Cache
— Can we design a circuit to implement cache memory control ?

* How to rewrite code to get better cache performance: code
optimization

45

45

Why Cache ?

*Gap between main memory speed and processor speed
» Reading data/inst from memory will take more than 1 processor cycle
= Increases time to execute program

*What ?: Place a small but fast memory close to the processor

*How?: Why does this work
* Principle of Locality

46

46

23

Cache and Main Memory

Block Transfer

Word Transfer M/\
CPU "] cache g Main Memory
Fast Slow

(a) Single cache

Level 1 > Level 2 Level 3 Main
(L1) cache (L2) cache (L3) cache Memory

Y

CPU

Fastest Fast

Less Slow
fast

(b) Three-level cache organization

47

47

Simple Model of Memory Hierarchy. ..

*Sequence of addresses
* How many ?
*CPU generates request for memory location —i.e., an address
* How long does it take to get this data ?
= Depends where it is in the Memory hierarchy
*Simplified Model for memory hierarchy:
» small amount of Fast On-chip Cache memory
» Larger amount of off-chip Main memory
* Huge Disk

48

48

24

How does Cache memory work ?
«Address space = 2N words each of some size K bits
* N bit address

*Memory addresses go from 0 to 2N-1

* These are the addresses that the processor requests in the Load or
Store instructions, or when fetching a new instruction (value in PC)

*Some of these memory locations are placed in the cache

+ If you see it in the cache then don’t need to go all the way to memory
to read them

= Faster time to read/write inst/data!

49

49

Memory Access times

*memory access time
» On-chip Cache takes 1 processor cycle
* Main memory takes a number (10-50) processor cycles
+ Disk takes a huge amount
*Simple model we will use:
* Memory = Cache + Main memory
» Small size Cache = not everything fits in it
*Cache organization:
» Cache consists of a set of blocks each of some number of bytes
* Only a block can be fetched into and out of cache
» Eg; if block is 16 bytes, then load 16 bytes into cache

= Cannot load a single byte

50

50

25

Memory Access times using Simplified Model

+|f data is found in Cache then time =1
» Called a cache hit
*Else time is Main memory access time
» Cache miss, means read from next level
*Note: need a ‘control unit’ to determine if location is in cache
or not
» Cache controller

*Why does concept of caching work ?

* Principle of Locality

= Programs access data nearby, or data/instructions that were used
recently

51
51
Terminology Summary
» Hit: data appears in block in upper level (i.e. block X in cache)
+ Hit Rate: fraction of memory access found in upper level
» Hit Time: time to access upper level which consists of
= RAM access time + Time to determine hit/miss
* Miss: data needs to be retrieved from a block in the lower level (i.e.
block Y in memory)
+ Miss Rate =1 - (Hit Rate)
* Miss Penalty: Extra time to replace a block in the upper level +
= Time to deliver the block the processor
+ Hit Time << Miss Penalty (500 instructions on Alpha 21264)
Lower Level
To Processor | Upper Level Memory
| Memory
Blk X
From Processor . BIKY
52

52

26

Memory Hierarchy--Performance

» Placing the fastest memory near the CPU can result in
increases in performance

» Consider the number of cycles the CPU is stalled
waiting for a memory access: memory stall cycles
* CPU execution time =
(CPU clk cycles + Memory stall cycles) * clk cycle time.

* Memory stall cycles = number of misses * miss
penalty

* Fewer misses in cache = better performance!

53

53

Average Memory Access Time

AMAT = HitTime + (1-h) x MissPenalty I

« Hit time: basic time of every access.
» Always look to check if data is in cache
* Hit rate (h): fraction of access that hit
« usually substituted by miss rate m = (1-h)
» Miss penalty: extra time to fetch a block from lower level,
including time to replace in CPU
» Access time to read/write to memory module

= Can extend the same equation to disks/networks

54

54

27

Example 1

*System = Processor, Cache, Main Memory
» Cache time = 1 processor cycle
* Memory access time = 50 processor cycles

*Suppose out of 1000 memory accesses (due to Load/Store
and Inst fetch)
* 40 misses in the cache
= 960 hit in the Cache
* Miss ratio m = (1-h) = 40/1000 = 4%
*Average memory access time with and without cache ?

55

55

Example. .

*Average memory access time with and without cache ?
*AMAT-cache = 1 + miss ratio * miss penalty
* 1+ (0.04)*50 = 3
*AMAT-without-cache = 50
*What happens if miss ratio increases ?

56

56

28

Cache Memory Hardware Design

*Main memory has 2N locations
«Cache has 2k locations
* Smaller than main memory
» How to “organize” these cache locations ?
*Processor generates N bit address
*The Cache Controller hardware must look at this N bit

address and decide (a) if it is in cache and (b) where to place
itin cache ?

57

57

Cache Memory Design: Definitions

» Cache has a total size — number of bytes in cache
» Transfers take place in blocks
* A whole block is transferred between memory and cache
» Locating a block requires two attributes:
» Size of block
» Organization of blocks within the cache
» Block size (also referred to as line size)

» Smallest usable block size is the natural word size of the processor
= Else would require splitting an access across blocks and slows down translation

58

58

29

Memory viewed as blocks

«If cache block size = K bytes, then memory can be viewed as contiguous
set of blocks each of size K

16 byte memory,
16 byte With 4 byte sized
memory Cache blocks;

4 blocks of memory

59
59
Cache/Main Memory Structure
Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
. 3 (K words)
L]
o | - = ccooooa
c-1
Block Length
h (K Words) - .
(a) Cache 0
L]
Block
2"-1
Word
Length_'
(b) Main memory 60

60

Where can a block be placed in a cache?-Cache
Organization

 If each block has only one place it can appear in the cache,
it is said to be “direct mapped”
* mapping is usually (Block address) MOD (Number of blocks in the
cache)
» If a block can be placed anywhere in the cache, it is said to
be fully associative

» If a block can be placed in a restrictive set of places in the
cache, the cache is set associative.

» A setis a group of blocks in the cache. A block is first mapped onto
a set, and then the block can be placed anywhere within that set.
(Block address) MOD (Number of sets in the cache)
if there are n blocks in a set, the cache is called n-way set
associative

61

61

Where can a block be placed in a cache?

Fully Associative Direct Mapped Set Associative
12345678 12_3452218 123i§21§

Cache: Selt 1[Selt 2|selt 3
Block 12 can go Block 12 can go Block 12 can go

anywhere only into Block 4 anywhere in set O
(12 mod 8) (12 mod 4)

123456789...

Memory: ——12

What if next block needed is block 4 ?
62

31

Cache Design: How is data found in Cache?
* Note: Time to find data is the hit time: affects performance
* Processor generates address request — some N bit address

* Two questions:
* 1. How do we know if a data item is in the cache?
« 2.Ifitis, how do we find it? .. In which cache block do we look

* Answer: We need mapping from memory Addresses to
Cache blocks
» Addressing: How to break up N bits of address into fields so

a cache controller can easily determine if the address
requested is already stored in cache ?

» Time to determine this “mapping” is the hit time....

= So need to design fast hardware circuit to implement this
mapping!

63

63

Designing a Cache Controller

» we described how a cache should be organized
» Work with direct mapped caches

* how complex is a cache controller ?

* Question: can you leverage your H/W design knowledge to
build/design a cache controller ?

64

64

32

Cache Design 1: Addressing.

*Focus on Direct mapped:
* How to implement N Mod.P where P=2K

= Jook at K bits from any N bit word, and map words with same
values in the K bits !l
= Ex: K=2, N=8
—1110101 mod 4 =1
—1110110 mod 4 = 2

* Question: Given N bit address,
* How to determine which cache block to map the address — index bits
* How to determine which of the words is the one in memory — tag bits
» Since we are working with blocks, how to find the specific word within

the block — offset bits

* N bit address is broken into these 3 fields!

= N bit address: [tag][index][offset]

* Recall: Memory is viewed as a collection of blocks (size is cache

block size) since we have to transfer an entire cache block

65

65

Cache Design 1: Addressing.

*Focus on Direct mapped:

How to implement N Mod.P where P=2K
= look at K bits from any N bit word, and map words with same
values in the K bits I!!
= Ex: K=2, N=8
—1110101 mod 4 =1
—1110110 mod 4 =2

* Question: Given N bit address,

How to determine which cache block to map the address — index bits
How to determine which of the words is the one in memory — tag bits

Since we are working with blocks, how to find the specific word within
the block — offset bits

N bit address is broken into these 3 fields!

= N bit address: [tag][index][offset]

Recall: Memory is viewed as a collection of blocks (size is cache
block size) since we have to transfer an entire cache block

66

66

33

Example

Memory
(0,1,2,3) Block 0
(4,5,6,7) Block 1
(8,9,10,11) Block 2 Cache
12,13,14,15
:16 1718 19; Block 3 Cache block 0 Block
T iz Cache block 1
Addresses Cache block 2
In each block Cache block 3
4 bytes in
each block
Addresses:
(051’2!3)
67
67
Example
Memory 4 Cache blocks
M block 0 Mem Block x maps into
emory bloc cache block (y mod 4)
Memory block 1
Memory block 2 Cache
Memory block 3
Memory block 4 Cache block 0 Mem Block 4
Memory block 5 Cache block 1 | mem Block 1
Memory block 6 Cache block 2 Mem Block 6
Cache block3
Mem Block 3
68

68

Addressing -- Example

8 bit address

 Byte addressability; 28= 256 bytes
*4 byte cache blocks

» Each cache block has 4 bytes

» Therefore main memory 256 bytes divided into 64 blocks
*Total size of cache = 16 bytes

* 4 blocks, each of 4 bytes
Into which cache block do we place address 01101101
*How do we know which block from memory is in the cache

block ?
* Isit01101101 or 11001101

69

69

Addressing -- Example

8 bit address
» Byte addressability & 256 bytes in memory
*4 byte cache blocks

» Each cache block has 4 bytes = need 2 bits to specify which byte
within the block

* 4 bytes in each block — memory is 256/4= 64 blocks
*Total size of cache = 16 bytes
* 4 blocks in cache = apply Modulo 4 mapping
*Into which cache block do we place 01101101
« Last two LSB are offset within a block
* Next 2 LSB are modulo 4 and specify cache block

*How do we know which block from memory is in the cache
block ?
* Isit01101101 or 11001101

70

70

35

Addressing -- Example

*The three fields are:
» Tag: the 4 most significant bits

= Tell you which of the memory blocks are in the cache

» Offset (block offset): the 2 least significant bits

= Gives the address within the cache block

* Index: the remaining 2 bits

= Tells you into which cache block a memory address is placed
«In general: For N bit address: if each cache block (size) is 2K
bytes, and total cache memory size is 2 blocks (i.e, 2* bytes)
» Tag of (N-k-j) bits: the most significant bits
» Offset of K bits: the least significant k bits
* Index of j bits
*Memory block M gets placed in cache block (M mod(2).
* M is (N-k) most significant bits

71

71

So how complex is the hardware required ?
*Given N bit address, the cache controller needs to determine
if the requested word is in cache or not

« If not, then send the address to the memory bus

*This process has to be built into hardware

» Complexity of the circuit determines time taken to determine if word is
in cache

= Hit time is function of complexity of circuit
» For direct mapped, can you think of a hardware design ?

72

72

36

Finding cache block: implement mod 2i function

*Given the N bits of address with the three fields of tag, index,
offset, how do you find the cache block ?
- 01101101
* mod 4 (mod 2iwhere 2i is number of cache blocks)
*Given j bits of index, one of these is selected...
» Ex: for 2 index bits:
= |f index bits=00 then select/enable cache block 0
= |f index bits =01 then cache block 1
= |f index bits =10 then cache block 2
= |f index bits =11 then cache block 3
» what logic device implements this ?

*Decoder!

73

73

Finding word within a block
Following four addresses are all in one block
e 01101100
e 01101101
e 01101110
e 01101111

e Example: if address if 01101101 then we have to find/fetch that one
byte from among the four in the block

e How do you select one of these four..what is the logic device?

e Multiplexer !

74

74

37

Matching the tag of a memory block

e Number of memory blocks could all be mapped to the same cache
block

¢ Following two will get mapped to same block

e 01101101
e 01111101

e You are searching to see if 01101101 is in the cache.....
e Suppose we stored the tag of the block for each cache block (in the
cache controller)

e How do you check if cache contains this block with tag 0110 ?..what is
the logic device ?

e Comparator

75

75

Cache Controller for Direct Mapped Caches

block index
pd T~

a tag |idx| b.o.

decoder
decoder

0. 0>
C L p\Multiplexg Ta
M-I‘:aat%h e mat%h

76

o
|

76

38

Performance Impact of cache parameters

» Cache performance is related to cache design
» Size of cache, size of each block, organization

» Two ways of improving performance:
» decreasing the miss ratio
» decreasing the miss penalty

* More techniques:
» Pre-fetching
» Compiler directed pre-fetching

77

77

Summary: Memory Access time optimization

*If each access to memory leads to a cache hit then time
to fetch from memory is one cycle

* Program performance is good!
+If each access to memory leads to a cache miss then
time to fetch from memory is much larger than 1 cycle

* Program performance is bad!
*Design Goal:
How to arrange data/instructions so that we have as few
cache misses as possible.
* How about rewriting the code to improve the cache hit
rates ?

» This is part of what code optimization accomplishes!!

78

78

39

Quick Look at Secondary Memory (Disks) and
Virtual Memory

79

79

The Complete memory hierarchy

*Processor has a set of registers
» Processor instructions operate on contents in the registers
*Small, fast cache memory placed near the processor
*Main memory sitting outside the chip
« If data is not in the cache then fetch from main memory
» Takes longer to access main memory than cache
+Disk sitting outside the motherboard
+ If data/program not in main memory then fetch/load from disk
» Takes much longer to access disk than main memory
* remote/network storage sitting on the network

» Takes significantly more time to fetch data...but huge storage
capacity

80

80

40

Secondary Memory

*CPU generates request, N bit address, to fetch from memory
*What happens if main memory (chip capacity) is less than 2N
*Data and programs may be stored in a non-volatile

component
« MS-Word executable is on disk

* Your application data
*What happens if more than one process is running on the
system
* Multiprogramming
* What is the address space available to each user ?

*Need to use Secondary memory (Disk drive) !

81

81

Reading a Disk Sector (1)

CPU chip

. . CPU initiates a disk read by writing a
® register file

command, logical block number, and
ALU destination memory address to a port
Cj (address) associated with disk controller.

: A N main
bus interface \,—l/l_ memory

< ﬁ F /O bus >

L L

usB graphics disk
controller adapter controller

(T | I
mouse keyboard monitor

82

82

41

IC

register file

a ALU

bus interface

Jggglging a Disk Sector (2)

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

—A K=
3

main
memory

<

<

<

usB graphics
controller adapter
mousekeyboard monitor

J

dick
contioller

>

83
83
Reading a Disk Sector (3)
. il When the DMA transfer completes, the
register file disk controller notifies the CPU with an
|:> ALU interrupt (i.e., asserts a special “interrupt”
Cj pin on the CPU)
Ty Gy I R Qu— o
< ﬁ ? I/0 bus >
usB graphics disk
controller adapter controller
mouse keyboard monitor —
84

84

42

What is multiprogramming and Why ?

*Processor overlaps execution of two processes/programs
* When one is waiting for I/O, the other is “swapped” in to the processor
= Save the “state” of the process being swapped out
*Processes need to share memory
» Each has its own address space
*Leads to better throughput and utilization

85

85

Last step: Virtual Memory

*N bit address space...
«If word is not in main memory then it is on disk — need a
controller to manage this ..analogous to cache controller
* Virtual memory management system
*Note: transfers take place from disk in “blocks” of M bytes
(sector) — page of data
*Memory consists of a number of pages
» Determine if the page is in main memory or not
*N bit address broken into fields which determine page
number, and whether page is in the memory or disk

+If page size is 1024 bits...how to organize the N bit address
??

86

86

43

Virtual Memory

» Main memory can act as a cache for the secondary storage (disk)

Virtual addresses Physical addresses
Address

i

8 Disk addresses

* Advantages:
* illusion of having more physical memory
* program relocation
* protection

87

87

Mapping Virtual Memory to Physical Memory
*Divide Memory into equal sized Ogirtual Memory

“chunks” (say, 4KB each)
\E/i’rh

relati
nshi
-0 Single

193 |Process
Heap:

— o
\ -I—‘Static y |

* Any chunk of Virtual Memory assigned to
any chunk of Physical Memory (“page”)

Physical Memor
64 MB —~ y

ORIV AY]

M
——

T AnATN

| Code
0 0 Qnstli;

Rith 88

88

44

Pages: virtual memory blocks

+ Page faults: the data is not in memory, retrieve it
from disk

* huge miss penalty, thus pages should be fairly large (e.qg.,
4KB)
 reducing page faults is important (LRU is worth the price)

» can handle the faults in software instead of hardware
+ using write-through is too expensive so we use writeback

* Once again, program locality plays a key role in
performance !!

* More on virtual memory....operating systems!

89

How do disks works?

Disk Geometry

» Disks consist of platters, each with two surfaces.

» Each surface consists of concentric rings called tracks.
» Each track consists of sectors separated by gaps.

surface
track k gaps

s/
[\
\ /
. ./

\/

I]

sectors

90

90

45

Disk Geometry (Muliple-Platter View)
» Aligned tracks form a cylinder.

cylinder k
surface 0
latter 0
surface 1 P
surface 2
platter 1
surface 3
surface 4

latter 2
surface 5 P

91
91
Disk Operation (Single-Platter View)
L]
The disk
su?f:;se The read/write head
. . is attached to the end
spins at a fixed _
rotational rate of the arm and flies over
the disk surface on
a thin cushion of air.
By moving radially, the arm
can position the read/write
head over any track.
92

92

46

Disk Access Time

* Average time to access some target sector approximated by :
» Taccess = Tavg seek + Tavg rotation + Tavg transfer
+ Seek time (Tavg seek)
» Time to position heads over cylinder containing target sector.
» Typical Tavg seek =9 ms
* Rotational latency (Tavg rotation)
» Time waiting for first bit of target sector to pass under r/w head.
» Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
» Transfer time (Tavg transfer)
« Time to read the bits in the target sector.
» Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

93

93

Accessing a Disk Page

*Time to access (read/write) a disk block:
» seek time (moving arms to position disk head on track)
* rotational delay (waiting for block to rotate under head)
* ftransfer time (actually moving data to/from disk surface)

*Seek time and rotational delay dominate.

*Key to lower /O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

94

94

47

Placement of Data on Disk

*Placement of data on disk can affect performance of program

*Example: If you are reading an entire array, then:
» place the data in consecutive disk blocks
» seek time to get first disk block
* Remaining blocks will incur no seek time
= Time = T_seek + N(T_transfer + T_rot)

» Naive approach: N (T_seek + T_transfer + T_rot)
» Speedup: N*T_seek ~ O(N)

95

95

Logical Disk Blocks
* Modern disks present a simpler abstract view of the
complex sector geometry:
» The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)
* Mapping between logical blocks and actual (physical)
sectors
* Maintained by hardware/firmware device called .
» Converts requests for logical blocks into (surface,track,sector) triples.
» Allows controller to set aside spare cylinders for each zone.

» Accounts for the difference in “formatted capacity” and “maximum
capacity”.

96

96

48

