
1

Pointers & Arrays in C &
Translation to Assembly

(Chapters 16, 19)

1

2

LC3 Memory Allocation & Activation Records

•Global data section: global variables stored here
•R4 points to beginning

•Run-time stack: for local variables
• R6 points to top of stack
• R5 points to top frame on stack
• Local variables are stored in an activation

record, i.e., stack frame, for each code block
(function)

• New frame for each block/function
(goes away when block exited)

• symbol table “offset” gives distrance from base of
frame (R5 for local var).

• Address of local var = R5 + offset
• Address of global var = R4 + offset

• return address from subroutines in R7

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

2

2

3

Next: Pointers, Arrays, (I/O), Structs . . .
•The real fun stuff in C…..
•Pointers and Arrays

• Read Chapters 16, 18 of text

•Dynamic data structures
• Allocating space during run-time … malloc() and free()
• Read chapter 19 of text

•C skills...Labs will cover some of these
• Make files
• File I/O
• Debugging – GDB
• Valgrind

• why do you need to know these ?

3

4

C Review: Pointers and Arrays

•Pointer
• Address of a variable in memory
• Allows us to indirectly access variables

§ in other words, we can talk about its address
rather than its value

•Array
• A list of values arranged sequentially in memory
• Expression arr[4] refers to the 5th element of the array arr

§ Turns out arr is also pointer to first element in array !

4

3

5

Pointers
•Two language mechanisms for supporting pointers in C

• * : for dereferencing a pointer
§ called the “Indirection” or “Dereference” operator

• & : for getting the address of a variable
§ :called the “Address Operator”

• These “unary” operators are called Pointer Operators

•Note: There is a difference between pointer operators and
declaring pointer variables:

§ int * my_pointer ;
– “int *” in this context is a “type” not the use of the operator *

§ Confused? Chapter 16 in Patt/Patel is outstanding!

5

6

•Pointer: variable that contains address of a memory location
•Example of use:

int a=0 ; // declares a regular integer variable
int *b ; // declares a pointer to an integer var.

// asterisk * tells compiler this is a ptr
b=&a ; // finds “address” of a, assigns it to b
*b=5 ; // dereferences b, sets value of a=5

Pointers

Address Contents
x4000 (a) 0
x4001 (b) Xx4001 (b) x4000

Address Contents
x4000 (a) 5

Dereferencing – fancy word for: contents at address
Dereferencing pointer b means:

get contents of memory at the address b is pointing to

6

4

7

Why use pointers….
Passing by value is not enough

• In C, arguments/parameters (to function) are passed by value
• values of Arguments pushed onto run-time stack

•Example : you’ve seen this in swap (quiz):
•function that's supposed to swap the values of its arguments.
• variables in main remain local to main… foo cannot access them

7

Executing the Swap Function

a
b
valueB
valueA

3
4
4
3

R6

before call void Swap(int a, int b)
{
int temp = a;
a = b;
b = temp;
return;

}
/* in main we call….*/
Swap(valueA, valueB);

8

5

Executing the Swap Function

a
b
valueB
valueA

3
4
4
3

R6

before call

temp

a
b
valueB
valueA

3

4
3
4
3

R6

after call
These values
changed...
a,b are local to temp

...but these
did not.

Swap needs addresses of variables outside its own
activation record/scope.

Swap

main

9

10

Pointers as Arguments
•Passing a pointer into a function allows the function to
read/change memory outside its activation record.
•Let’s rewrite the swap function

•void swap(int *a, int *b)
{
int t;
t = *a;
*a = *b;
*b = t;

}

Arguments are
integer pointers.
Caller passes addresses
of variables that it wants
function to change.

We call it like this:
int x = 42;
int y = 84;

swap(&x, &y);

10

6

Tracing the run-time stack
int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}
x 42
y 84

stack

Stack
Frame

for main

11

Tracing the call to swap

x 42
y 84
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;
*a = *b;
*b = t;

}

12

7

Trace

x 84
y 84
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

13

Trace

x 84
y 42
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

14

8

Trace

x 84
y 42 Stack

Frame
for main

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

15

16

Passing Pointers & LC3 Code generation
•How to pass pointers in the activation record (in LC3 compiler) ?
•Parameters to the function are the addresses of the arguments!

• Address for a local var is R5 + offset
• Set value of argument = R5+offset

void swap(int *a, int *b)
{

int t;
t = *a;
*a = *b;
*b = t;

}

Symbol Table offsets
a 4
b 5
t 0

16

9

17

Passing Pointers to a Function
•main() wants to swap the values of x and y
•passes the addresses to Swap:
•
swap(&x, &y);

•Code for passing arguments:
• ADD R0, R5, #-1 ; addr of y

ADD R6, R6, #-1 ; push
STR R0, R6, #0
ADD R0, R5, #0 ; addr of x
ADD R6, R6, #-1 ; push
STR R0, R6, #0

temp

a
b
y
x

#3000
#2999
4
3

xEFFD

R6

R5

R5= #3000

Address of x,y pushed onto stack

17

18

LC3 Code generation (for swap)
•Inside the Swap routine

; int t = *a; get a and dereference
LDR R0, R5, #4 ; R0=#3000, @a
LDR R1, R0, #0 ; R1=M[#3000]=*a=3
STR R1, R5, #0 ; t=3

; *a = *b; get b & dereference
LDR R1, R5, #5 ; R1=#2999 @b
LDR R2, R1, #0 ; R1=M[#2999]=*b=4
LDR R0, R5, #4; R0=#3000 @a
STR R2, R0, #0 ; M[#2999]=4

; *b = t;
LDR R2, R5, #0 ; R2=3
LDR R0, R5, #5 ; R0= #2999, @b
STR R2, R0, #0 ; M[#2999]=3

t

a
b
x
y

3

#3000
#2999
3
4

R6
R5

4

3

18

10

19

Pointers
• Powerful and dangerous

• What happens with *x if x is pointing to memory outside your user
space?

• No runtime checking (for efficiency)
• Bad reputation
• Java attempts to remove the features of pointers that cause

many of the problems hence the decision to call them references
• No address of operators
• No dereferencing operator (always dereferencing)
• No pointer arithmetic

19

20

Pointers

Name Contents

i

Code

int i;

20

11

21

Pointers

Name Contents

i

ip

Code

int i;
int *ip;

21

22

Pointers

Name Contents

i 42

ip

Code

int i;
int *ip;
i = 42;

22

12

23

Pointers

Name Contents

i 42

ip

Code

int i;
int *ip;
i = 42;
*ip = 84;

ERROR!!!
Core Dump if lucky

23

24

Pointers

Name Contents

i 42

ip

Code

int i;
int *ip;
i = 42;
ip = &i;

Address of
Operator

24

13

25

Pointers

Name Contents

i 84

ip

Code

int i = 42;
int *ip = &i;
i = 42;
ip = &i;
*ip = 84

25

26

Pointers

Name Contents

i ??????????

ip

Code

int i;
int *ip;
i = 42;
ip = &i;
*ip = &i;

NO!!!
26

14

27

Pointers

Name Contents

i 84

ip

ip2

Code

int i = 42;
int *ip = &i;
i = 42;
ip = &i;
*ip = 84
int **ip2;
ip2 = &ip;

27

28

Pointers

Name Contents

i 100

ip

ip2

Code

int i = 42;
int *ip = &i;
i = 42;
ip = &i;
*ip = 84
int **ip2;
ip2 = &ip;
**ip2=100;

28

15

Pointers & Arrays in C &
Translation to Assembly:
Part 2 – Arrays

29

30

Array Syntax
•Declaration
• type variable[num_elements];

•Array Reference
• variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time

30

16

31

Arrays
•What are arrays?

• a collection of many variables of the same type with an index
•Ex: int my_array[10] ; // declaration

• LC-3: allocates 10 slots for 16-bit integers in Data Memory
• These are stored in consecutive locations in memory

Address Contents
x4000 X
x4001 X
x4002 X
… …
x4008 X
x4009 X

my_array

On LC-3:
10 “16-bit” slots

Note: can’t
assume initialized
to 0

Just a label
for memory
location x4000

31

32

Arrays
•Indexing Arrays

• C offers “indexing” capability on array variables

•Ex: In this example: my_array[2] equals 4
• Allocates 10 slots for 16-bit integers in Data Memory
• What happens when you type: my_array [11] ???

Address Contents
x4000 X
x4001 X
x4002 4
… …
x4008 X
x4009 X

Offset of 2
from start:
my_array

On LC-3:
10 “16-bit” slots

Note: can’t
assume initialized
to 0Remember the offset?: LDR RD, RS, Offset

Imagine: LDR R0, my_array, #2

my_array

32

17

33

Arrays and pointers
•Arrays and pointers are intimately connected in C

• Array declarations allocate areas of memory for use
• We are really defining an address (aka – a pointer) to the first element of the array

•Example – mixing arrays and pointers!
int my_array[10]; // declares array of 10 ints
int *my_ptr; // declares a pointer to an int var.
my_ptr = my_array + 2; // points to 3rd row in array

Address Contents
x4000 X
x4001 X
x4002 4
… …
x4008 X
x4009 X

my_ptr=x4002

my_array

*my_ptr equals 4
Dereferencing ptr:

33

35

Arrays: Memory layout
int ia[6];

• Allocates consecutive spaces for 6 integers
• How much space is allocated?

• Depends on the type of the array
• How many bytes for an int ?
• How many bytes for a char?
• Ex: if 4 bytes for int, then we need 24 bytes for 6 integers
• Ex: 1 byte for char, then we need 6 bytes for 6 character array

35

18

37

Arrays
int ia[6];

• Allocates consecutive spaces for 6 integers
• How much space is allocated?

6 * sizeof(int)
• Also creates ia which is effectively a constant pointer to the first

of the six integers
• Cannot change ia !!!

• What does ia[4] mean?
• Multiply 4 by sizeof(int). Add to ia and dereference

yielding:

ia

ia[4]

37

38

sizeof
• Compile time operator
• Two forms

sizeof object
sizeof (type name)

• Returns the size of the object or the size of objects of type name
in bytes

• Note: Parentheses can be used in the first form with no adverse effects

38

19

39

sizeof
• if sizeof(int) == 4 then sizeof(i) == 4
• On a typical 32 bit machine...

sizeof(*ip) ® 4
sizeof(ip) ® 4
char *cp;
sizeof(char) ® 1
sizeof(*cp) ® 1
sizeof(cp) ® 4

int ia[6];
sizeof(ia) ® 24

Not the same thing!!!

39

40

Arrays & Pointer Arithmetic
int ia[6];

ia

• ia[4] means *(ia + 4)

40

20

41

Pointer Arithmetic
• Note on the previous slide when we added the literal 4 to a

pointer it actually gets interpreted to mean
4 * sizeof(thing being pointed at)

• This is why pointers have associated with them what they are
pointing at!

• C does size calculations under the covers, depending on size of
item being pointed to:

•double x[10];
•double *y = x;

*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6

41

44

Pointers/Arrays/Strings…more in Labs & HW6
•There is no “string” datatype in C

• But we can use arrays of char’s to mimic behavior

•Simplest Ways to Declare “Strings”:
• char my_string [256] ;

§ Works just like any array, each element is character
my_string[0]=‘T’ ;
my_string[1]=‘h’ ;

§ You must “null terminate” this array
§ Note: no way to know length of an array

– Unless one loops through it entirely and determines ending
§ Pass “my_string” as argument to functions!

– That’s the 1st address of the string in memory
• char *my_string = “This is a string” ;

§ Will be null terminated
§ Cannot be modified

44

21

45

Summary: Relationship between Arrays and
Pointers
• array name is essentially a pointer to the first element in the array

char word[10];
char *cptr;

cptr = word;/* points to word[0] */

•Difference:
Can change the contents of cptr, as in
• cptr = cptr + 1;
• (The identifier "word" is not a variable.)

45

47

Passing Arrays as Arguments
• C passes arrays by reference

• the address of the array (i.e., of the first element)
is written to the function's activation record

• otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS];
…
mean = Average(numbers);
…

}
int Average(int inputValues[MAX_NUMS]) {

…
for (index = 0; index < MAX_NUMS; index++)

sum = sum + inputValues[index];
return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10

47

22

48

Array as a Local Variable
int foo(int myarray[])
{
int grid[10];

…
}

48

49

Array as a Local Variable

• if array is a local variable
•Array elements are allocated
as part of the activation record.

int grid[10];

•First element (grid[0]) is at lowest
address of allocated space.

•Why ?...so pointer arithmetic works!

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

49

23

50

Example and C to LC3 translation
int foo(){
int grid[10];
int x,
int *ptr;

int i;
….
grid[6] =5;

x= grid[i];
ptr = grid;

…
}

Symbol Table
Identifier offset
grid -9
x -10
ptr -11
i -12

50

51

LC-3 Code for Array References

i
ptr
x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

int foo(){
int grid[10];

int x,
int *ptr;
int i;

….
grid[6] =5;

x= grid[i];
ptr = grid;

…

}

Identifier offset
grid -9
x -10
ptr -11
i -12

51

24

52

LC-3 Code for Array References

grid[6] = 5;
AND R0, R0, #0
ADD R0, R0, #5 ; R0 = 5
ADD R1, R5, #-9 ; R1 = &grid[0]
STR R0, R1, #6 ; grid[6] = R0 R5

i
ptr
x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

grid[6] = 5;
where is &grid[0]? (address)?
&grid[6] = &grid[0] +6

52

53

LC-3 Code for Array References

x =grid[i];
LDR R0, R5, # -12 ; R0= i
ADD R1, R5, # -9 ; R1= &grid[0]
ADD R1, R1, R0 ; R1 = &grid[i]
LDR R2, R1, #0 ; R2 = grid[i]
STR R2, R5, # -10 ; x=R2=grid[i]

R5

i
ptr
x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

x=grid[i];
get value of i: from address R5-12
get &grid[0]? (address)?
&grid[i] = &grid[0] +I

Store into x = address R5-10

53

25

54

LC-3 Code for Array References

ptr =grid;
ADD R1, R5, # -9 ; R1= &grid[0]
STR R1, R5, # -11 ; ptr= R1

R5

i
ptr
x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

ptr=grid;
get address of grid[0]
set value of ptr to address of

grid[0]

54

55

Common Pitfalls with Arrays in C
•Overrun array limits

• There is no checking at run-time or compile-time to see whether reference
is within array bounds.

• int array[10];
int i;
for (i = 0; i <= 10; i++) array[i] = 0;

•Declaration with variable size
• Size of array must be known at compile time.

• void SomeFunction(int num_elements) {
int temp[num_elements];
…

}

55

26

56

Recall
int ia[6];

ia[2] = 42;

Address calculation:
2 * sizeof(*ia) + ia

Access is by dereferencing
*(2 * sizeof(*ia) + ia)

42

Remember!
You don't type in
the sizeof part!

56

57

What happens?
int ia[6];

ia[8] = 84;

Address calculation:
8 * sizeof(*ia) + ia

42 84

Remember!
You don't type in
the sizeof part!

57

27

58

Stack Smashing
int another(int a, int b) {

int x[4];

x[1]

x[2]

b

a

Return Val

Return Addr

Old FP

x[3] FP

x[0]

58

59

Stack Smashing
int another(int a, int b) {

int x[4];

x[1]

x[2]

x[8] b

x[7] a

x[6] Ret Val

x[5] Ret Addr

x[4] Old FP

x[3] FP

x[0]

59

28

Multidimensional Arrays
in C

60

61

Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

61

29

62

How does a two dimensional array work?

How would you store it?

0 1 2 3

0

1

2

62

63

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

63

30

64

Advantage
• Using Row Major Order allows visualization as an array of arrays

ia[1]

ia[1][2]

0,0 0,1 0,2 0,3 1,0 1,1 1,3 2,0 2,1 2,2 2,31,2

0,0 0,1 0,2 0,3 1,0 1,1 1,3 2,0 2,1 2,2 2,31,2

64

65

Element Access
• Given a row and a column index
• How to calculate location?
• To skip over required number of rows:

row_index * sizeof(row)
row_index * Number_of_columns * sizeof(arr_type)

• This plus address of array gives address of first element of
desired row

• Add column_index * sizeof(arr_type) to get actual
desired element

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

65

31

66

Element Access

Element_Address =

Array_Address +
Row_Index * Num_Columns * Sizeof(Arr_Type) +
Column_Index * Sizeof(Arr_Type)

Element_Address =

Array_Address +
(Row_Index * Num_Columns + Column_Index) *

Sizeof(Arr_Type)

66

67

What if array is stored in Column Major Order?

Element_Address =

Array_Address +
(Column_Index * Num_Rows + Row_Index) *

Sizeof(Arr_Type)

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

67

32

68

How does C store arrays
•Row major

• Pointer arithmetic stays unmodified

•Remember this…..
• Affects how well your program does when you access memory

68

69

Now think about
• A 3D array

int a

69

33

70

Now think about
• A 3D array

int a[5]

70

71

Now think about
• A 3D array

int a[4][5]

71

34

72

Now think about
• A 3D array

int a[3][4][5]

72

73

Offset to a[i][j][k] ?
• A 3D array

int a[3][4][5]
[slices][rows][columns]

offset = (i * rows * columns) + (j * columns)
+ k

73

35

75

Static vs. Dynamic Allocation
• There are two different ways that multidimensional arrays could be

implemented in C.

• Static: When you know the size at compile time
• A Static implementation which is more efficient in terms of space and probably

more efficient in terms of time.
• Dynamic: what if you don’t know the size at compile time?

• More flexible in terms of run time definition but more complicated to understand
and build

• Dynamic data structures
• Need to allocate memory at run-time – malloc

• Once you are done using this, then release this memory – free

• Next: Dynamic Memory Alloction

75

