
1

Compiling C to Assembly
– the Run-time Stack

(Chapters 11-13)

1

2

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

Machine Architecture

Devices

Micro-architecture

Logic Circuits

Translation from C to
Assembly

Scope of variables
Function calls
Recursion
Pointers & Arrays
Data Structures
Memory Allocation

How do user programs
get executed?

2

2

3

Programming Languages
•Assembly language is low-level.
• It exposes machine instructions and details of the ISA to the

programmer.
• It is ISA-specific.
• It is useful when the programmer needs fine-grained control of

instruction flow and memory usage.

•A high-level language provides a computational abstraction
that is machine-independent.

• Symbolic names (variables) instead of registers and memory
locations.

• High-level operators: multiply, divide, shift, ...

3

Why use a High-Level Language? …our choice= C

•Expressiveness: say more with less effort, closer to human-level thinking

C statement

a = b * c;

Equivalent LC-3 code

AND R2,R2,#0

AND R3,R3,#0

LDR R0,R5,#-1 ; b
BRz L3

BRp L1
NOT R3,R3

NOT R0,R0

ADD R0,R0,#1
L1 LDR R1,R5,#-2 ; c

BRz L5

BRp L2
NOT R3,R3

NOT R1,R1

ADD R1,R1,#1
L2 ADD R2,R2,R0 ; b * c

ADD R1,R1,#-1

BRp L2
ADD R3,R3,#0

BRp L3
NOT R2,R2

ADD R2,R2,#1

L3 STR R2,R5,#0 ; store to a

•Both multiply two values together –
•which is easier to understand?

4

3

Machine
Language
(binary)

Assembly
Language

C Java Python Haskell What’s
Next??

The Evolution of Programming

Simula/C++/etc

5

6

Quick Note: Compilation vs. Interpretation
•Different ways of translating high-level language
•Interpretation (LISP, Java, Python, Matlab…)

• interpreter = program that executes program statements (generally one
line/command at a time)

§ Called a Virtual Machine

• easy to debug, make changes, view intermediate results

•Compilation (C, C++, Pascal,…)
• translates statements into machine language

§ does not execute, but creates executable program

• performs optimization over multiple statements
Example:

X = W+W
Y = X + X
Z= Y + Y

Interpretted language: 3 instructions
Compiler optimized code: 1 instruction Z = 8*W

6

4

7

Compiling a C Program
•Entire mechanism is usually called
the “compiler”
•Preprocessor

• macro substitution
• conditional compilation
• “source-level” transformations

§ output is still C

•Compiler
• generates object file

§ machine instructions

•Linker
• combine object files

(including libraries)
into executable image

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

7

8

Linking, Loading,…Makefiles
•Linking: produce final executable program by combining other code
(libraries) used by program

• Dynamic Linking: instead of linking at compile time the linking is done at
run-time

• Multi-file development….Makefiles assist in this
• Read tutorials on makefiles

• Loader: load executable image generated by linker & execute
• Part of Operating system
• Memory management system does the actual mapping from user space to

physical addresses
§ .ORIG x3000 refers to user space x3000

8

5

9

Compiler
• Source Code Analysis

•“front end”: parses programs to identify its pieces – checks syntax
§ variables, expressions, statements, functions, etc.

• depends on language (not on target machine)
• Theory behind parsers = Foundations of Comp. course

•Code Generation… we will cover it implicitly in this course
• “back end”: generates machine code from analyzed source
• may optimize machine code to make it run more efficiently
• very dependent on target machine
• We will play the role of the code generation component as we discuss how

different C concepts are implemented in LC3
§ This is what the compiler backend does

•Symbol Table
• map between symbolic names and items
• like assembler, but more kinds of information

9

10

Lessons from Example – Lab9.c
•Concept of scope

• Global and local
§ Code block (enclosed in { }) defines a scope block (Useful for placing debugging statements)

• Prints:
§ Question1: Global= 0 Local = 1
§ Question2: Global= 4 Local = 2
§ Question 3: Global= 4 Local = 1
§ Question 5: Value of CC=8, x=5, y=4
§ Question 5a: in foo1: x=25, y=32796
§ Question 5b: value of x=5, value of y=32796 (some junk)

• Constants – computed at start and stays constant
• CC=8 even when x changes to 5

• concept of local variables and passing arguments by value to function foo
• Argument x passed to function foo1 is not changed in main
• Local variables x,y in foo1 different from those in main
• Local variable y is not initialized – so is set to some strange number

10

6

11

Implementing C: Translation from C to Assembly
•Translate C to assembly

• Translating operations is the easy part
• Y = A*B is: MULT R3, R1, R2

•Implement concept of scope
•Concept of storage class

• Static, Auto, Register….

•Pointers & Arrays
•Function calls

• Passing arguments to functions

•…HOW ?
•Starting point (Today): How are C variables allocated to memory
?....Run-time Stack

11

12

Translation: Allocation of Variables
•What is compiler's task?

1. Allocate memory for variables in a systematic way.
Will build a symbol table to keep track of variable type, size,
location.

2. Generate instruction sequences that carry out the computations
specified by operators and statements.

•For this class, we will compile "by hand" to get a sense of how
these translations occur.

12

7

13

Starting point for translation/compiler:
Concept of Scope of Variable

•In assembly, who has access to a memory location/variable ?
•In high level programs, who has access to a variable ?

• Concept of Scope of a variable

•So how do we make this happen in assembly ???

13

14

Defining a variable in C
• Identifier: references to this translate to locations

• Name of the variable
• Example: itslocal

• Type: gives us information on data representation and space
needed

• Type of variable such as int, float, char…
• Example: int itslocal

• Scope
• Where can it be accessed
• Example: global variable itsglobal

• Storage Class
• How does C compiler allocate the storage

§ Does value persist or not

• Two main classes in C: Automatic and Static

14

8

15

Scope: Global and Local
•Where is the variable accessible?
•Global: accessed anywhere in program
•Local: only accessible in a particular region

•Compiler infers scope from where variable is declared
• programmer doesn't have to explicitly state

• Symbol Table constructs this information
•Variable is local to the block in which it is declared

• block defined by open and closed braces { }
• can access variable declared in any "containing" block

•Global variable is declared outside all blocks

15

16

16

9

17

Example: Compiling to LC-3
#include <stdio.h>
int itsGlobal;
int foo(){

int xfoo=10;
int yfoo=1;
return(xfoo*10);}

main()
{
int localA; /* local to main */
int localB;

/* initialize */
localA = 5;
itsGlobal = 3;
/* perform calculations */
localB = localA + itsGlobal;
localA = foo();

/* print results */
printf("The results are: localA = %d, localB = %d\n",

localA, localB);
}

xfoo, yfoo are local to foo

localA, localB are local to main

itsGlobal is global variable

call function foo

17

18

Example: The Symbol Table

Name Type Offset Scope

itsGlobal int 0 global

localA int 0 main

localB int -1 main

xfoo int 0 foo

yfoo int -1 foo

• Like assembler, compiler needs to know information associated with identifiers
• in assembler, all identifiers were labels and information is address
• Symbol table kept track of the addresses of the labels

•Compiler keeps more information
•Name (identifier)
•Type
•Location in memory
•Scope

18

10

19

Scope & Storage Class: Where can you put
variables & how lang will their values persist ?

• Local variable inside a function
• Lasts only while the function is running

• Local variable inside a function
• Value persists throughout the life of the program

§ Persistance – use static keyword

• Global variable visible to all functions within a file
• Persists while program is running

• Global variable visible in more than one file
• Block scope – inside the block (defined by { })

• Persists while code block is running

19

Scope can be global within a file

static int i;

int foo(...)
{
...

}

int bar(...)
{

...
}

static int i;

int main()
{

...
}

int baz(...)
{

...
}

These are different variables with Global
scope within their respective files

20

11

Scope can be global across all files

int i; extern int i;

void f() {
extern int i;
...
...

}These are the same variable!

21

22

Storage Class:
Automatic Variables

• Local variable inside a function (lasts only while the function is
running)

• auto keyword (never used!)

• Located on stack

• Storage Class: AUTO

22

12

25

Memory
• Many languages have fixed mappings between scopes and lifetimes
• In C, we have the option to decide...

void foo(void) {
int x;
static int a;
x = 42;

• When the function goes away, x and its value go away since they were auto
storage class (and placed on stack).

• Setting a value into a static variable (e.g. a) means that the value is stored in a
static area and will persist throughout the entire execution of the program

25

26

Static Variables (II)
• static

• Initialized to zero (like global)

• Located in static area
• Value persists !

• Storage Class: STATIC

26

13

28

Confused?
int x;
static int y;

int main()

{
static int z;
int w;

...

static?

auto?

28

29

auto
int foo(int z)
{
int x;
...

if(x == z)
{

int y;
y = ...

auto variables
(implicitly)

29

14

30

Static Initialization
void foo(void)
{

int x = 10;
static int y = 20;
printf(“x = %d y = %d\n”, x, y);
y += 30;

}

• What prints the first time foo is called?
• What prints the second time?

x=10 y=20

x=10 y=50
/* value of y from previous
call persists */

30

Scope vs. Lifetime

Scope

• File Scope

• Block Scope

Lifetime

• Life of program

• Life of block

Can be overridden with “static”

31

15

32

Other goodies

• register
• Suggests to compiler that this variable should be kept in a register
• Cannot get address of variable declared register
• Not as important as it once was with modern compilers

• volatile
• Type qualifier
• Tells compiler that value in this variable may change on its own!
• Used in

§ shared memory applications
§ Memory mapped I/O

• …
• Read on your own for now.

32

34

Allocation of Variables in Memory and enforcing
Scoping rules

• Simply assigning a memory location for each variable is not enough
to enforce scope

•Need to look at a better scheme to allocate high level program
variables to memory in the processor

• Scope
• Storage class
• Allocate space to a variable

34

16

35

Memory Model (mapping C variables to Memory):
Allocating variables in Memory
•How to allocate memory locations
to variables

• Enforce scope

Low Memory

High Memory

x0000

xFFFF

35

36

Memory Model: Compiling & Executing C
programs – the Run-time Stack

• Run-time stack – this is the KEY!
• Our convention will be that

"high-memory" will be on the
bottom and "low-memory" on
top.

• drawings are not to scale

Low Memory

High Memory

x0000

xFFFF

36

17

37

Typical Arrangement
• Normally the actual

program code
(executable instructions)
is placed in low memory
• Operating System and

boot code usually in
lowest mem area

Code
x0000

xFFFF

37

38

Typical Arrangement
• Next we have an area for

storage of constant data Code

Constant Data

x0000

xFFFF

38

18

39

Typical Arrangement
• Data that may be

changed follows Code

Constant Data

Alterable Data

x0000

xFFFF

39

40

Typical Arrangement
• These three items

comprise what is
considered the static
area of memory. The
static area details (size,
what is where, etc.) are
known at translation or
compile time.

Code

Constant Data

Alterable Data

Static

x0000

xFFFF

40

19

41

Typical Arrangement: Heap
• Immediately above the static

area the heap is located.
• The heap can expand upward

as the program dynamically
requests additional storage
space
• malloc()

• In most cases, the runtime
environment manages the
heap for the user

Code

Constant Data

Alterable Data

St
at

ic

Heap

x0000

xFFFF

41

42

Typical Arrangement: stack for local variables
• Finally, the

activation/run-time stack
starts in high memory
and can grow to lower
addresses as space is
needed.

• Items maintained in the
stack include
• Local variables
• Function parameters
• Return values

Stack

Code

Constant Data

Alterable Data

St
at

ic

Heap

x0000

xFFFF

42

20

43

auto variables

• auto, short for automatic
variables are those that exist
on the stack. The auto
keyword is not normally used.

• Automatic means that space is
allocated and deallocated on
the stack automatically
without the programmer
having to do any special
operations.

D
yn

am
ic

Stack

Code

Constant Data

Alterable Data

St
at

ic

Heap

x0000

xFFFF

43

44

Summary of Typical Arrangement

• These items in the upper
portion (higher addresses)
of the memory change*
during execution of the
program.

• Thus they are called
dynamic

Dynamic

*Not just their value Stack

Code

Constant Data

Alterable Data

St
at

ic

Heap

x0000

xFFFF

44

21

45

Compiler Magic
• The compiler has the job of converting your C program into

assembly code
• Thus it must convert the symbolic variable names into addresses
• How does it keep track of what is where?

• Keep track of scope
• Storage class

• Symbol table provides much of this information

45

46

Activation Records!!!
•Two main areas (for now) in memory:

• Global data section
• Run-time stack

•Local variables exist only during lifetime of function
• De-allocated after function completes

•How to define area of memory for a code block/function ?
•Activation Record

• Also called Stack Frame
• Local variables allocated in the activation record
• Activation record is portion of run-time stack

§ Function can only access a valid portion of the stack
§ Should not access another functions activation records!

• When function returns…POP the record
§ The local variables can no longer be accessed!

46

22

47

Symbol Table
• For each variable keeps track of

• Type
• Scope
• Location (as an offset)

§ Either in global area or local area
§ If in local area, then based on activation record

• Other info (const, etc.)

47

48

Example: The Symbol Table

Name Type Offset Scope

itsGlobal int 0 global

localA int 0 main

localB int -1 main

xfoo int 0 foo

yfoo int -1 foo

• Like assembler, compiler needs to know information associated with identifiers
• in assembler, all identifiers were labels and information is address
• Symbol table kept track of the addresses of the labels

•Compiler keeps more information
•Name (identifier)
•Type
•Location in memory
•Scope

48

23

Offset?
• Assembly code written

by a compiler usually
looks a little different
from assembly code
written by hand

• Registers are
dedicated to point to
key areas of memory

• R4 is the Global
Pointer

• Points to start of global
static area

Stack

Code

Constant Data

Alterable Data

Heap

x0000

xFFFF

R4

49

Keeping Track of auto variables
• Stack pointer is

obvious but the
compiler writer needs
more info...

• Where is the activation
stack frame?

• R6 is Top of Stack
(TOS) pointer

Stack

Code

Constant Data

Alterable Data

Heap

x0000

xFFFF

R4

R6

50

24

Why do we care?
• We would like to know

where a variable is
throughout the
execution of a function

• But, wait you say, I can
just reference the
variable from the stack
pointer

• HA!

Stack

Code

Constant Data

Alterable Data

Heap

x0000

xFFFF

R4

R6

51

Can we use TOS
int f(int a, int b) {

int c;
c = a + b;
return c;

}

int main() {
int x;
int y = 4;
x = f(7, y);
printf("%d\n", x);
return 0;

}

• What do we need to
keep track of?

52

25

Frame Pointer

Stack

Code

Constant Data

Alterable Data

Heap

x0000

xFFFF

R4

R6

R5

• The Frame Pointer
designates a fixed spot in
the activation stack which
can be used as a
reference throughout
execution of the function.

• Note: Frame pointer also
called dynamic link

• Store Frame pointer in
register….R5

• Points to ‘start’ of set of
local variables

Strictly speaking: we can use stack ptr and forgo FP –
some compilers do this!

53

54

LC3: Local Variable Storage
•Local variables are stored in an
activation record, for each code block also known as a stack
frame.

• Cannot afford to forget about the Stack J

•Symbol table “offset” gives the
distance from the base of the frame.

• R5 is the frame pointer – holds address
of the base of the current frame.

• A new frame is pushed on the
run-time stack each time a block is entered.

• Because stack grows downward,
base is the highest address of the frame,
and variable offsets are <= 0.

temp
value
numberR5

54

26

55

Summary: LC3 Allocation for Variables
•Global data section

• All global variables stored here
(actually all static variables)

• R4 points to beginning

•Run-time stack
• Used for local variables
• R6 points to top of stack
• R5 points to top frame on stack
• New frame for each block

(goes away when block exited)

•Offset = distance from beginning
of storage area

• Global: LDR R1, R4, #4
• Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

55

LC-3 Memory Map – The Complete Picture

•The LC-3 operating system
reserves some of the memory
address space for trap vectors,
service routine code, and
memory-mapped I/O.

•Program instructions will be
placed in the "program text"
section.

•Global variables are allocated
next. R4 is set to the first
allocated address for globals.

•Local variables are stored on the
run-time stack. R5 points to the
local variables of the currently-
executing function.

56

27

57

Variables and Memory Locations
•In our examples, a variable is always stored in memory.

•When assigning to a variable, must store to memory location.

•A real compiler would perform code optimizations that try to keep
variables allocated in registers.

• Why?

57

58

Example: Compiling to LC-3
#include <stdio.h>
int itsGlobal;
int foo(){

int xfoo=10;
int yfoo=1;
return(xfoo*10);}

main()
{
int localA; /* local to main */
int localB;

/* initialize */
localA = 5;
itsGlobal = 3;
/* perform calculations */
localB= localA + itsGlobal
localA = foo();
/* print results */
printf("The results are: localA = %d, localB = %d\n",

localA, localB);
}

xfoo, yfoo are local to foo

localA, localB are local to main

itsGlobal is global variable

call function foo

58

28

59

Example: The Symbol Table

Name Type Offset Scope

itsGlobal int 0 global

localA int 0 main

localB int -1 main

xfoo int 0 foo

yfoo int -1 foo

59

60

Example: Code Generation
; main
; initialize variables

AND R0, R0, #0
ADD R0, R0, #5 ; localA = 5
STR R0, R5, #0 ; (offset = 0)

AND R0, R0, #0
ADD R0, R0, #3 ; itsGlobal = 3
STR R0, R4, #0 ; (offset = 0)

address R5+offset=0 is
address of localA =>
accessing local var localA

address R4+offset=0 is
address of itsGlobal =>
accessing R4 implies

Global variable

60

29

61

Example (continued)
; statement:

localB= localA + itsGlobal;
;address of localA = R5 + #0
; address of localB = R5 + (- #1)
; address of itsGlobal = R4 + #0

LDR R0, R5, #0 ; load/read localA into R0
LDR R1, R4, #0 ; load/read itsGlobal to R1
ADD R2, R1, R0 ; add two values, put in R2
; this result has to be written to localB
STR R2, R5, # -1 ; store value in R2 to

localB

61

62

Example: C to LC3 Translation
•What is the C code corresponding to these LC3 code segments

Y= A+X;
•First identify accesses/addresses for variables A, X, Y:

• R4, #0 R5, #0 R5, # -1

•Symbol Table:
Identifier Type Offset Scope
A int 0 Global
B int 2 Global
X int 0 main
Y int -1 main
Z int -2 main

62

