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Logic Design ( Part 5)
Sequential Logic Devices & 
Sequential Circuits
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Combinational vs. Sequential
•Combinational Circuit

• always gives the same output for a given set of inputs
§ ex: adder always generates sum and carry,

regardless of previous inputs

•Sequential Circuit
• stores information
• output depends on stored information (state) plus input

§ so a given input might produce different outputs,
depending on the stored information
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Sequential Circuits – The agenda
• Definition of sequential circuits

• Components of a sequential circuit

• common storage ‘devices’ (built from latches)
• Register
• Memory

• synchronization using a CLOCK

•Modifying latches to work with a clock…Flip Flops
• These become the basic unit of storage in sequential circuits

•Designing sequential circuits – methodology
• Finite state machine diagrams
• Mapping to truth table…..build circuit
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Sequential Circuit Schematic & State Machine
•sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state) 

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

1.combinational circuit to compute output and next state
2.storage elements to store state
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Sequential Circuits: Finite State 
Machines

•The behavior of sequential circuits can be expressed using 
characteristic tables or finite state machines (FSMs).

• FSMs consist of a set of nodes that hold the states of the 
machine and a set of arcs that connect the states.

• Directed graph to represent a FSM

•Moore and Mealy machines are two types of FSMs that are 
equivalent.

• They differ only in how they express the outputs of the machine.
• Moore machines place outputs on each node/state

§ Associate an output with each state

• Mealy machines present their outputs on the transitions. 
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FSM Design Process
• The first step is to model the behavior of the machine

• Based on problem statement
• Identify what the inputs are
• Identify the outputs
• Determine what needs to be stored to capture the “state” of the 

machine
• Represented as a graph – finite state diagram

• Nodes: States – a state stores summary of events (until current time)
• Edges: Transition from current state to next state 

• Based on input and current state
• Computed by combinational logic

• Outputs: Using Moore machine, determine value of outputs at each
state
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Design a Counter: counts from 0 to 7 

7

8

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all 
possible “states” for the
machine
Arrows show movement from
one state to the next while switch 
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of 
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1
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Example: A Vending Machine
•Accept user input (coins), when total is at least 50 cents 
dispense output (candy)

• We will not model the change to be returned, and only care if the 
input is at least 50 cents

•Input valid coins:
• Q (25cents) D (10) or N (5)

• What should it keep track of ? 
• current total
• Is it 50 cents or more ?

•When it reaches 50 or more:
• Generate output

•States of the machine ?
• What should each state capture ?
• How many states ?
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Sequential Logic
•Where do we start:
•Build a device, using combinational logic devices, to store a 
value…done!!

• D Latch ( and RS Latch) – stores 1 bit
• concept of memory

•Build other storage devices using the D Latch and logic 
devices we have at our disposal (i.e., in our library)

•What is the methodology behind design of sequential logic 
circuits

• Finite State Machines to Truth Tables to Circuit

•Combine sequential and combinational logic devices to 
“assemble” a simple processor!
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Latches and Flip-Flops and Clock
•Latch: basic circuit for storage

• Operate on changes in Level (i.e., 1 or 0)
• D-Latch can store 1 bit

•Flip-flop: 
• Sequential circuits take input from output of storage
• Latches that work on change of level can lead to unstable sequential 

circuits
§ As level changes the outputs change --- inputs change!

• Flip-Flop circuits designed to operate properly when they are part of a 
sequential circuit
§ Modify D Latch to get a D Flip Flop (DFF)
§ Flip Flop changes state at the ‘instant’ that the level changes

§Clock:
§ Need to coordinate and synchronize when states change…
§ Use Clock to enable or disable the devices in a timed manner
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Our Latches
• We have designed two devices capable of storage

•RS Latch
• Cross coupled NAND gates
• Two inputs S (set) and R (reset) and Two outputs Q and Q’

•D Latch
• Built from RS Latch
• Two inputs D (value to be set), WE (write enable) and two outputs Q 

and Q’

12
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Recall the Gated D-Latch: Our 1-bit storage element
•Add logic to an R-S latch

• Create a more convenient interface, prevent S=0 && R=0
•Two inputs: D (data) and WE (write enable)

• When WE = 1, latch is set to value of D
§ S = NOT(D), R = D

• When WE = 0, latch continues to hold previous value
§ S = R = 1  (hold condition for SR latch)

• Extra logic does not allow S=0, R=0 case to occur

0

1

10WED

Q

11

S

R

D=1 && WE=1
So Q=1
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Next… Storage Devices
•we now have a device ( D-Latch) that can store a bit

• Abstract the device: input D, WE; output/storage Q

•Use this to build ‘real’ storage devices….
•Temporary storage in a computer…Register

• Where are variables stored before being sent to the arithmetic unit for 
operations on them?

• Can we build an n-bit register using latches?
•What about “main” memory

• Memory hierarchy ?

D QD

WE

14
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Multi–Bit D-Latch: Register ?
• A collection of D-latches, controlled by a common WE
• When WE=1, 3-bit value D is written to the outputs

D QD
3 3

WE

WE

D Q0D0

WE

D Q1

WE

D Q2

WE

D1

D2

Abstraction:
3-bit D latch
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Multi–Bit D-Latch – Register: Inside the latches
• A collection of D-latches, controlled by a common WE
• When WE=1, n-bit value D is written to the outputs

D2 Q2

D1 Q1

D0 Q0

D QD
3 3

WE

WE

16
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Recall: A Basic Model of a Computer

0 -20

1 10

2 -7

3 8

4 3

5 9

0 ADD 0, -20, $0
1 ADD 0, 10, $1
2 SUB $0, $1, $0
3 MPY $0, $4, $5

4 ADD $0, $5, $0
5 DIV $0, 5, $0

Memory CPU Instructions

2 PC

Essential Part of Computer!

Address Data

Basic Components: Address: Looks up data
Note: both are in binary
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Memory
•We know how to store m-bit number in a register
•How about many m-bit numbers ?

• Bank of registers?
•How to fetch a specific m-bit number?

• addressing

18
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Memory
•Now that we know how to store bits, we can build a memory –
a logical k by m array of stored bits

••
•

k = 2n
locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)
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Memory Interface
vThere are two basic operations on a memory

• Selecting one of the memory locations to read from
• Selecting one of the memory locations to write to

vInterface signals
• A:  n-bit address lines to select/specify a location
• Dout : Contents of selected location during read (m bits)
• Din : Value to be stored during write (m bits)
• WE : If WE = 1 then write operation, WE = 0, read operation

Memory
(2n by m-bit)

A
n

Din

WE

Dout

m m

20
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Memory
• Looking from the outside, what do we need?

OUT

INADDR

WE
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Memory 

• Address Space
n bits allow the addressing of 2n memory locations.

• Example: 24 bits can address 224 = 16,777,216 locations 

(i.e. 16M locations).

• If each location holds 1 byte (= 8 bits) then the memory is 16MB.

• If each location holds one word (32 bits = 4 bytes) then it is 64 MB.

A large number of addressable fixed size locations

22
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Memory 
• Addressability

• Computers are either byte or word addressable - i.e. each memory 
location holds either 8 bits (1 byte), or a full standard word for that 
computer (16 bits for the LC-3, more typically 32 bits, though now many 
machines use 64 bit words).

•Normally, a whole word is written and read at a time:
• If the computer is word addressable, this is simply a single address 

location.

• If the computer is byte addressable, and uses a multi-byte word, then the 
word address is conventionally either that of its most significant byte (big 
endian machines) or of its least significant byte (little endian machines). 

23
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Memory
• READ operation: Given address A of N bits, fetch contents at 
that address

• From 2N locations we select one of them to be sent to the output
• WRITE: Given address A of N bits, write into exactly one of 
the 2N locations.

OUT

INADDR

WE

24
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Devices  to construct Memory ?
• To store a m-bit number use a ”register” (m-bit D-latch)

• To store 2N of these m-bit numbers, use 2N m-bit latches

•For READ: what is the device that can send one out of 2N 

inputs (inputs are in the 2N latches) ?

•For WRITE: what is the device that can enable exactly one 
Write Enable (WE) from the 2N D-latches ?

25
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22 by 3-bit memory

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
Dout

A
2•Read operation

22 or 4 registers

Selects “address” to read

But how do we 
select/enable ONE
of the D-latches to

send to the output?
Given 2 bit address,

Select ONE latch

Address bits
are select lines

to MUX

26
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22 by 3-bit memory

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
Dout

A
2•Write operation

WE

3
Din

D
ec

od
er

Limitation:
You can only read

or write at any given 
time

Use 2-4 Decoder:
Input address bits= A,
exactly one D-latch
has WE=1

How do we enable write into
exactly one memory location

27
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22 by 3-bit memory - Multiple “Ports”

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
DR

AR
2

•Independent Read/Write

WE

3
DW

D
ec

od
er

AW
2

You can read from one 
address and write to 

another with this
arrangement

(notice 1 address line for R
1 address line for W)

28
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22 by 3-bit memory - Multiple Read Ports

D0

3 3

D1

3 3

D2

3 3

D3

3 3

3
DR2

AR2
2

WE

3
DW

D
ec

od
er

AW

3
DR1

AR1
2

2

Read from 2 locations
At once,

Write to a third!
(notice 3 address lines)

(We will use this later
In something called the:

“register file” for the CPU)

29

address

Inside an Efficient 22 by 3-bit Memory - Single 
Port

address
decoder

word WEword select

write
enable

input bits

output bits mux

latch
(not flip-flop)

What is 
different?

D-latch
Makes this 
memory 
writeable 

when clock is 
HIGH, 

30
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More Memory Details
•This is still not the way actual memory is implemented

• Real memory: fewer transistors, denser, relies on analog properties
•But the logical structure is similar

• Address decoder
• Word select line, word write enable
• Bit line

•Two basic kinds of RAM (Random Access Memory)
•Static RAM (SRAM) - 6 transistors per bit

• Fast, maintains data as long as power applied
•Dynamic RAM (DRAM) - 1 transistor per bit

• Denser but slower, relies on “capacitance” to store data, needs 
constant “refreshing” of data to hold charge on capacitor

Also, non-volatile memories: ROM, PROM, flash, …

31

Dynamic RAM
• Information stored as charge on 

capacitors.
• Capacitors leak so values have 

to be ‘refreshed’ continually
• As memory chips get larger, 

access times tend to increase. 
The processor spends more time 
waiting for data.
ØThis is a major issue limiting 

computer systems performance

32
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Speed mismatch: Example
•Intel Core i5 – Processor

• Clock rates approx 2.5GHz, Clock period approx 0.4 ns

•DDR2-667 PC2-5300 SO-DIMM – 2 GB Memory
• Can deliver at most 1 64-bit word every 1.5 ns

•Mismatch between processor speed and memory speed

33
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Memory Hierarchy
• Modern computers try to mitigate memory delays by exploiting locality 

of reference through caches. 
• Smaller, faster memory stores are placed closer to the CPU and bulk 

transfers from slower memory are used 

CPU

Cache
Memories

Main Memory

Disks
Magnetic, Flash etc.

Storage in MegaBytes, 
access times single clock cycles 

Storage in GigaBytes, 
access time 10s of clock cycles 

Storage in TeraBytes, 
access time 1000s of clock cycles 

34
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Memory Hierarchy

•Will return to this at the end of the course….!

35
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Are we ready to design sequential circuits  and 
finite state machines ?

•Is something missing ?

•When do states change in a machine ?

•Do we let states change at arbitrary times ?

•What do you think happens in a computer ?

36
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Clocked Flip-Flops/Circuits
•Subsystem in a computer consists of a large number of
combinational and sequential devices

• Each sequential device is like latch which is in one of two states
• As machine executes its cycle, the states of all sequential devices 

change with time
•To control large collection of devices in an orderly 
(synchronized) fashion, machine maintains a clock

• Requires all devices to change their states at the same time
• Clock generates sequence of pulses

• Much easier to design, debug, implement, and test

•How do we change latches so that they allow change in state 
synchronized with the clock ?
•Sequential logic circuits require a means by which events can 
be sequenced…..clock!

37
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Introducing - The Clock!
•A clock controls when stored values are “updated”

• Electrical waveform – sends pulses through a circuit
• Changes values at a periodic rate 

• The clock will act as the ‘heartbeat’ of our system
• The number of cycles per second is the clock frequency measured in 

cycles per second or Hertz (Hz)
• The clock period refers to the duration of one clock cycle. The period 

and frequency are inversely related.
§ Typical clock frequency: 2.5GHz = 2.5 x109 Hz
§ So corresponding clock period = 1/(2.5 x 109) = .4x10-9 sec

– That would be: 0.4 nanoseconds

“1”

“0”

time®One
Cycle

38
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Attaching Clock to D-Latch
• Attach CLOCK to the WE on D-Latch 
• We create “windows” of time that we can store data into latch

§ When the CLOCK is “HIGH” – D-latch is open
§ When the CLOCK is “LOW” – D-latch is closed

• D=Q while CLOCK is High
• We have to prepare what we wish to store, right before latch closes

CLOCK

D

Q

open openclosed

time®

D

WE  clock

Oops…changes in input while clock=High cascade to output Q
- Q can change multiple times during clock cycle: not synchronized with clock

39
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Why Clocked D-latches may not work
• Sequential circuit: the next state (and output) depend on 
values of current state and input
•If input to D-latch changes while clock is High, then next state 
(and output) can change during this single clock cycle

• state we want to store as next state could be overwritten
• we want to force changes (in state and input) to be
synchronized to the clock

• allow input/states to be read and output/next state to change ONCE 
per clock cycle

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

40
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Enter the Flip Flop….
• Flip flops are edge triggered devices

• They capture the input and change state when the clock changes 
level
§ Positive edge triggered: when clock goes from 0 to 1
§ Negative edge triggered: when clock goes from 1 to 0

•We refer to the D flip flop as an edge-triggered device. 
• D=Q ONLY when WE changes from 0 to 1

•This differs from D latch, which is: level-triggered
• D=Q anytime WE equals 1

41
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D Flip-Flop vs. D-Latch – Timing Diagrams

D

Q

WE

Timing Diagram for DFF:

D

Q

WE

Timing Diagram for D-Latch:
Observe difference in how output Q
synchronizes with clock edge in DFF

42
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D Flip-Flop
•D Flip-Flop is a pair of D latches

• Isolates next state from current state
• Output of DFF read when clock is high, Next state stored end of cycle

•Two phases:
• Clock = 1:     WE1 =0: Latch #1 closed,     WE2 =1: Latch #2 open
• Clock = 0:     WE1 =1: Latch #1 open,        WE2 =0: Latch #2 closed

D

Clock

Q
Latch #1

Latch #2

Qinter

WE1 WE2

43
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D Flip-Flop timing Diagram

D

Qinter

Q

D

Clock

Q
Latch #1

Latch #2

Qinter

Clock L1-closed
L2-open

L1-open
L2-closed

L1-closed
L2-open

L1-open
L2-closed

WE1 WE2

44
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D Flip-Flop
• We can think of the D Flip-Flop as a 1 bit storage container with an 

input, D, and an output, Q and connected to a clock input
• A set of D flip-flops can be grouped together with common Clock and 

WE inputs to form a register -- replace D-latch with D flip flop

D Q

Clock

Flip-Flop

1
0

1
0Truth table for DFF:

X = don’t care (i.e, 0 or 1)

45
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Our basic “Storage” Devices

D QD

WE

DFF QD

CLK

RS
Q

S Q’
R

RS Latch – Stores 1 Bit, Level-Triggered
-1 “forbidden” input: S=0, R=0
-Holds Data when RS=11

D-Latch – Stores 1 Bit, Level-Triggered
-No “forbidden” inputs (fixes RS Latch)
-D=Q when WE=1
-Holds Data when WE=0

D-Flip-Flop – Stores 1 Bit, Edge-Triggered
-No “forbidden” inputs
-D=Q when WE (CLK) transitions from 0 to 1
-Holds Data for WE=1 or WE=0

-Except when WE transitions from 0 to 1

46
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One more tweak…
D Flip-Flop with Additional Write Enable

• From previous slides, we attached clock to WE of the D-flip-flop
• Now, we add another WE line to the flip flop

§ Just holds onto data already stored in DFF
• Give it the ability to “ignore” the clock!

D Q

Clock

Flip-Flop

WE

w/WE

0
1 D Q

Clock

DFF

WE

47
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Schematic of a Sequential Circuit

Combinational
Logic Circuit

State variables
(memory)

D Flipflops

Inputs
Outputs

Next State Values

Current State Values

Clock

48
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Next: Design methodology for sequential logic 
circuits .. Finite State Machines

•We have storage devices and method for synchronization
• Flip flops and Clock

•How do we design a clocked circuit to solve our problems ?
• Example:  Is there a methodology behind designing a circuit to 

implement a Counter ?
• Provide procedure for designing Sequential circuits (to 
implement Finite State Machine)

• Storage Device to store state: D flip flop
• Logic to implement next state: combinational gates/devices
• How to derive the logic: truth tables

49
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States in a FSM
• The concept of state

• the state of a system is a “snapshot” of all relevant elements at a 
moment in time.

• a given system will often have only a finite number of possible states.
• For many systems, we can define the rule which determines under 

what conditions a system can move from one state to another.
§ So when do they change states ? 

– Synchronized to clock (edge triggered)

• Determining the ‘states’
• Problem statement determines what information needs to be stored 

(state is a summary)
• How many states does the machine need ?

50
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Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be 

stored. Call them SN-1 SN-2 …S1S0 

• State diagram will show transitions from state to state based on 
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and 

the output at each state  -- common notation is S’ but confusion 
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

51
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Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all 
possible “states” for the
machine

Arrows show movement from
one state to the next while switch 
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of 
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

52
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Labelling States in Binary

000

001

010

011

100

101

110

111

Reset

We have 8 states, therefore we
need log2 8 =3 bits to encode
states in binary: 

from 000 to 111

Each bit is called a state variable
& Stored in one D flip flop

we need 3 Flip flops to
store 3 bits  S2 S1 S0

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

53
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Storage

•Each D flip flop stores one state bit.
•The number of storage elements (flip-flops) needed is 
determined by the number of states
(and the representation of each state).

• Each bit can be 0 or 1 = 2 states
• N bits can represent 2N states

•Example: If FSM has 12 states, then circuit needs log2 12 = 4 
storage elements (i.e., flip flops).

• Fewer the states, less hardware needed
§ Concept of Minimization of States for a given FSM…

– …in Foundations (where else!!)

54
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Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be 

stored. Call them SN-1 SN-2 …S1S0 

• State diagram will show transitions from state to state based on 
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state S* 

and the output at each state  (common notation is S’ but confusion 
with complement operator, so let’s use S*)

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

55
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Truth Table Representation of Counter

Input Present State Next State
On S2

(t)
S1
(t)

S0
(t)

S2*
(t+1)

S1* 
(t+1)

S0*
(t+1)

1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 0 1
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 0 0 0
0 X X X 0 0 0

56
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Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be 

stored. Call them SN-1 SN-2 …S1S0 

• State diagram will show transitions from state to state based on 
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and 

the output at each state  -- common notation is S’ but confusion 
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

This part is no different from combinational circuit design!

57
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Boolean functions for values of next state
•For each state variable, derive function that determines next 
state for that variable:
•Note: S2 (t+1) – value of state variable at time (t+1) is denoted 
as S2*
•Current states: S2 S1 S0

•Derivation here is only for case when On=1

•S2* = On.(S2’ S1S0 + S2S1’S0’ + S2S1’S0 + S2S1S0’)

•S1* = On.(S2’ S1’S0 + S2’S1S0’ + S2S1’S0 + S2S1S0’)

•S0* = On.(S2’ S1’S0’ + S2’S1S0’ + S2S1’S0’ + S2S1S0’)

58
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Circuit

On

D 
Flip flop

D 
Flip flop

S2

S1 S1*

S2*

S0*

S2*

S1*

Combinational circuit

Storage 
elements

D 
Flip flop S0*

Circuit
for S2*

Circuit
for S1*

Circuit
for S0*

59
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Summary: Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be 

stored. Call them SN-1 SN-2 …S1S0 

• State diagram will show transitions from state to state based on 
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and 

the output at each state  -- common notation is S’ but confusion 
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

60
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Example 2:  Blinking Traffic Sign: Start all lights 
off – lights bulbs 1,2,3,4,5 off
•(from textbook) Design control circuitry for a blinking traffic 
sign (to show “move right” message)

DANGER
MOVE RIGHT

1

2

3

4

5
Start 
Lights

61
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Step2: switch ‘on’ 2 lights – bulbs 1,2

DANGER
MOVE RIGHT

1

2

3

4

5

62
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Step 3: Switch ‘on’ 4 lights – bulbs 1,2,3,4

DANGER
MOVE RIGHT

1

2

3

4

5
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Step 4: switch ‘on’ 5 lights – 1,2,3,4,5

DANGER
MOVE RIGHT

1

2

3

4

5
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Step 5- switch all ‘off’ – lights bulbs 1,2,3,4,5 off
And repeat the cycle

DANGER
MOVE RIGHT

1

2

3

4

5
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Example: Traffic Sign
•A blinking traffic sign: How many lights/lightbulbs = 5
•How many states ?
•4 states

• No lights on
• 1 & 2 on 
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch is turned on)

•How many bits to represent the 4 states
•S1S0

• With S1S0 values:  00, 01, 10, 11
•How many ‘outputs’ (to control the 5 lights) = 5 ?
•If the sign is switched off then all lights turn off
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Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.
67
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Outputs
•Note we really have 3 groups of lights to be controlled = 3 
control lines X,Y,Z

• Group 1: Lights 1 and 2; controlled by Z
§ If Z=1 then Group 1 lights (1 and 2) are switched on

• Group 2: lights 3 & 4; controlled by Y
• Group 3: Light 5; controlled by X

•In this example, we associate each state with an output
• Depending on the current state, we switch on specific groups of lights
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all on grp 1,2 on

all off grp 1 on

1

1

0

0

0

1

0,1

01

10

11

00
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•When is group 1 on?
• in states 01, 10 and 11 - but only when the switch IN is on!

• Logic expressions for X,Y,Z
• Depends on S0 and S1 and Input is on

§ If Input is off then X,Y,Z are al 0

• can you come up with a logic expression for next state values 
of S0 and S1?
• Depends on current values of S0 and S1 and Input is on

§ Input off then both bits are set to 0 since next state is 00

• Next state value of S0 denoted S’0 = 1 if current state is 00 or current 
state 10 and In=1

•When do we switch to the next state?
• the two bits of S[1:0] are updated at every clock cycle
• we have to make sure that the new state does not propagate to the 

combinational circuit input until the next clock cycle.
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Traffic Sign Truth Tables

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0 S1’ S0’
0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.
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Boolean functions for light control bits
• from truth table, consider all rows where outputs =1

• Z = ((NOT S1)S0 + S1 (NOT S0 ) +  S1S0 ).In

•Y = (S1S0 + S1 (NOT S0 ) ).In

•X = (S1S0 ).In

72
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Traffic Sign Logic

D
flipflop
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Exercise: Design a sequential circuit 
• Counter that counts from 0 to 6

• Resets to 0 after 6
• Keeps going as long as “input” = 1
• Ignore this for now

• Finite state diagram
•Truth table
•Logic functions for next state
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Summary of Digital Logic
•Combinational logic

• Basic gates
• Combinational devices

•Sequential logic
• Storage element…Flip flop
• Theory behind design of finite state machines

§ They act like controllers of a circuit
•Sequential logic devices

• Memory, ROM, RAM, Registers

So, what is the purpose of all this ?.........
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The Agenda

•Take the elements that we have encountered so far
• Combinational Elements

§ Gates, Adders, Muxes, decoders
• Storage Elements

§ Flip flops, registers, memories

•And use them to build a circuit that can perform a sequence 
of arithmetic operations.
• In essence, we will build a very simple CPU
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From Logic to Processor Design

•Combinational Logic
• Decoders -- convert instructions into control signals
• Multiplexers -- select inputs and outputs
• ALU (Arithmetic and Logic Unit) -- operations on data

•Sequential Logic
• State machine -- coordinate control signals and data movement
• Registers and latches -- storage elements
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Next: Putting it all together
• The goal:

• Turn a theoretical device - Turing’s Universal Computational Machine -
into an actual computer ...

• … interacting with data and instructions from the outside world, and
producing output data.

• Smart building blocks:
• We have at our disposal a powerful collection of combinational and 

sequential logic devices.

• Now we need a master plan ...
• We need to start with defining the model of a computer architecture

§ Von Neuman model
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