
1

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2014 Narahari

Logic Design (Part 5)
Sequential Logic Devices &
Sequential Circuits

1

2

Combinational vs. Sequential
•Combinational Circuit

• always gives the same output for a given set of inputs
§ ex: adder always generates sum and carry,

regardless of previous inputs

•Sequential Circuit
• stores information
• output depends on stored information (state) plus input

§ so a given input might produce different outputs,
depending on the stored information

2

2

3

Sequential Circuits – The agenda
• Definition of sequential circuits

• Components of a sequential circuit

• common storage ‘devices’ (built from latches)
• Register
• Memory

• synchronization using a CLOCK

•Modifying latches to work with a clock…Flip Flops
• These become the basic unit of storage in sequential circuits

•Designing sequential circuits – methodology
• Finite state machine diagrams
• Mapping to truth table…..build circuit

3

4

Sequential Circuit Schematic & State Machine
•sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

1.combinational circuit to compute output and next state
2.storage elements to store state

4

3

5

Sequential Circuits: Finite State
Machines

•The behavior of sequential circuits can be expressed using
characteristic tables or finite state machines (FSMs).

• FSMs consist of a set of nodes that hold the states of the
machine and a set of arcs that connect the states.

• Directed graph to represent a FSM

•Moore and Mealy machines are two types of FSMs that are
equivalent.

• They differ only in how they express the outputs of the machine.
• Moore machines place outputs on each node/state

§ Associate an output with each state

• Mealy machines present their outputs on the transitions.

5

6

FSM Design Process
• The first step is to model the behavior of the machine

• Based on problem statement
• Identify what the inputs are
• Identify the outputs
• Determine what needs to be stored to capture the “state” of the

machine
• Represented as a graph – finite state diagram

• Nodes: States – a state stores summary of events (until current time)
• Edges: Transition from current state to next state

• Based on input and current state
• Computed by combinational logic

• Outputs: Using Moore machine, determine value of outputs at each
state

6

4

7

Design a Counter: counts from 0 to 7

7

8

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all
possible “states” for the
machine
Arrows show movement from
one state to the next while switch
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

8

5

9

Example: A Vending Machine
•Accept user input (coins), when total is at least 50 cents
dispense output (candy)

• We will not model the change to be returned, and only care if the
input is at least 50 cents

•Input valid coins:
• Q (25cents) D (10) or N (5)

• What should it keep track of ?
• current total
• Is it 50 cents or more ?

•When it reaches 50 or more:
• Generate output

•States of the machine ?
• What should each state capture ?
• How many states ?

9

10

Sequential Logic
•Where do we start:
•Build a device, using combinational logic devices, to store a
value…done!!

• D Latch (and RS Latch) – stores 1 bit
• concept of memory

•Build other storage devices using the D Latch and logic
devices we have at our disposal (i.e., in our library)

•What is the methodology behind design of sequential logic
circuits

• Finite State Machines to Truth Tables to Circuit

•Combine sequential and combinational logic devices to
“assemble” a simple processor!

10

6

11

Latches and Flip-Flops and Clock
•Latch: basic circuit for storage

• Operate on changes in Level (i.e., 1 or 0)
• D-Latch can store 1 bit

•Flip-flop:
• Sequential circuits take input from output of storage
• Latches that work on change of level can lead to unstable sequential

circuits
§ As level changes the outputs change --- inputs change!

• Flip-Flop circuits designed to operate properly when they are part of a
sequential circuit
§ Modify D Latch to get a D Flip Flop (DFF)
§ Flip Flop changes state at the ‘instant’ that the level changes

§Clock:
§ Need to coordinate and synchronize when states change…
§ Use Clock to enable or disable the devices in a timed manner

11

12

Our Latches
• We have designed two devices capable of storage

•RS Latch
• Cross coupled NAND gates
• Two inputs S (set) and R (reset) and Two outputs Q and Q’

•D Latch
• Built from RS Latch
• Two inputs D (value to be set), WE (write enable) and two outputs Q

and Q’

12

7

13

Recall the Gated D-Latch: Our 1-bit storage element
•Add logic to an R-S latch

• Create a more convenient interface, prevent S=0 && R=0
•Two inputs: D (data) and WE (write enable)

• When WE = 1, latch is set to value of D
§ S = NOT(D), R = D

• When WE = 0, latch continues to hold previous value
§ S = R = 1 (hold condition for SR latch)

• Extra logic does not allow S=0, R=0 case to occur

0

1

10WED

Q

11

S

R

D=1 && WE=1
So Q=1

13

14

Next… Storage Devices
•we now have a device (D-Latch) that can store a bit

• Abstract the device: input D, WE; output/storage Q

•Use this to build ‘real’ storage devices….
•Temporary storage in a computer…Register

• Where are variables stored before being sent to the arithmetic unit for
operations on them?

• Can we build an n-bit register using latches?
•What about “main” memory

• Memory hierarchy ?

D QD

WE

14

8

15

Multi–Bit D-Latch: Register ?
• A collection of D-latches, controlled by a common WE
• When WE=1, 3-bit value D is written to the outputs

D QD
3 3

WE

WE

D Q0D0

WE

D Q1

WE

D Q2

WE

D1

D2

Abstraction:
3-bit D latch

15

16

Multi–Bit D-Latch – Register: Inside the latches
• A collection of D-latches, controlled by a common WE
• When WE=1, n-bit value D is written to the outputs

D2 Q2

D1 Q1

D0 Q0

D QD
3 3

WE

WE

16

9

17

Recall: A Basic Model of a Computer

0 -20

1 10

2 -7

3 8

4 3

5 9

0 ADD 0, -20, $0
1 ADD 0, 10, $1
2 SUB $0, $1, $0
3 MPY $0, $4, $5

4 ADD $0, $5, $0
5 DIV $0, 5, $0

Memory CPU Instructions

2 PC

Essential Part of Computer!

Address Data

Basic Components: Address: Looks up data
Note: both are in binary

17

18

Memory
•We know how to store m-bit number in a register
•How about many m-bit numbers ?

• Bank of registers?
•How to fetch a specific m-bit number?

• addressing

18

10

19

Memory
•Now that we know how to store bits, we can build a memory –
a logical k by m array of stored bits

••
•

k = 2n
locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)

19

20

Memory Interface
vThere are two basic operations on a memory

• Selecting one of the memory locations to read from
• Selecting one of the memory locations to write to

vInterface signals
• A: n-bit address lines to select/specify a location
• Dout : Contents of selected location during read (m bits)
• Din : Value to be stored during write (m bits)
• WE : If WE = 1 then write operation, WE = 0, read operation

Memory
(2n by m-bit)

A
n

Din

WE

Dout

m m

20

11

21

Memory
• Looking from the outside, what do we need?

OUT

INADDR

WE

21

22

Memory

• Address Space
n bits allow the addressing of 2n memory locations.

• Example: 24 bits can address 224 = 16,777,216 locations

(i.e. 16M locations).

• If each location holds 1 byte (= 8 bits) then the memory is 16MB.

• If each location holds one word (32 bits = 4 bytes) then it is 64 MB.

A large number of addressable fixed size locations

22

12

23

Memory
• Addressability

• Computers are either byte or word addressable - i.e. each memory
location holds either 8 bits (1 byte), or a full standard word for that
computer (16 bits for the LC-3, more typically 32 bits, though now many
machines use 64 bit words).

•Normally, a whole word is written and read at a time:
• If the computer is word addressable, this is simply a single address

location.

• If the computer is byte addressable, and uses a multi-byte word, then the
word address is conventionally either that of its most significant byte (big
endian machines) or of its least significant byte (little endian machines).

23

24

Memory
• READ operation: Given address A of N bits, fetch contents at
that address

• From 2N locations we select one of them to be sent to the output
• WRITE: Given address A of N bits, write into exactly one of
the 2N locations.

OUT

INADDR

WE

24

13

25

Devices to construct Memory ?
• To store a m-bit number use a ”register” (m-bit D-latch)

• To store 2N of these m-bit numbers, use 2N m-bit latches

•For READ: what is the device that can send one out of 2N

inputs (inputs are in the 2N latches) ?

•For WRITE: what is the device that can enable exactly one
Write Enable (WE) from the 2N D-latches ?

25

26

22 by 3-bit memory

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
Dout

A
2•Read operation

22 or 4 registers

Selects “address” to read

But how do we
select/enable ONE
of the D-latches to

send to the output?
Given 2 bit address,

Select ONE latch

Address bits
are select lines

to MUX

26

14

27

22 by 3-bit memory

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
Dout

A
2•Write operation

WE

3
Din

D
ec

od
er

Limitation:
You can only read

or write at any given
time

Use 2-4 Decoder:
Input address bits= A,
exactly one D-latch
has WE=1

How do we enable write into
exactly one memory location

27

28

22 by 3-bit memory - Multiple “Ports”

D0

3 3

D1

3 3

D2

3 3

D3

3 3

M
U

X

3
DR

AR
2

•Independent Read/Write

WE

3
DW

D
ec

od
er

AW
2

You can read from one
address and write to

another with this
arrangement

(notice 1 address line for R
1 address line for W)

28

15

29

22 by 3-bit memory - Multiple Read Ports

D0

3 3

D1

3 3

D2

3 3

D3

3 3

3
DR2

AR2
2

WE

3
DW

D
ec

od
er

AW

3
DR1

AR1
2

2

Read from 2 locations
At once,

Write to a third!
(notice 3 address lines)

(We will use this later
In something called the:

“register file” for the CPU)

29

address

Inside an Efficient 22 by 3-bit Memory - Single
Port

address
decoder

word WEword select

write
enable

input bits

output bits mux

latch
(not flip-flop)

What is
different?

D-latch
Makes this
memory
writeable

when clock is
HIGH,

30

16

31

More Memory Details
•This is still not the way actual memory is implemented

• Real memory: fewer transistors, denser, relies on analog properties
•But the logical structure is similar

• Address decoder
• Word select line, word write enable
• Bit line

•Two basic kinds of RAM (Random Access Memory)
•Static RAM (SRAM) - 6 transistors per bit

• Fast, maintains data as long as power applied
•Dynamic RAM (DRAM) - 1 transistor per bit

• Denser but slower, relies on “capacitance” to store data, needs
constant “refreshing” of data to hold charge on capacitor

Also, non-volatile memories: ROM, PROM, flash, …

31

Dynamic RAM
• Information stored as charge on

capacitors.
• Capacitors leak so values have

to be ‘refreshed’ continually
• As memory chips get larger,

access times tend to increase.
The processor spends more time
waiting for data.
ØThis is a major issue limiting

computer systems performance

32

17

33

Speed mismatch: Example
•Intel Core i5 – Processor

• Clock rates approx 2.5GHz, Clock period approx 0.4 ns

•DDR2-667 PC2-5300 SO-DIMM – 2 GB Memory
• Can deliver at most 1 64-bit word every 1.5 ns

•Mismatch between processor speed and memory speed

33

34

Memory Hierarchy
• Modern computers try to mitigate memory delays by exploiting locality

of reference through caches.
• Smaller, faster memory stores are placed closer to the CPU and bulk

transfers from slower memory are used

CPU

Cache
Memories

Main Memory

Disks
Magnetic, Flash etc.

Storage in MegaBytes,
access times single clock cycles

Storage in GigaBytes,
access time 10s of clock cycles

Storage in TeraBytes,
access time 1000s of clock cycles

34

18

35

Memory Hierarchy

•Will return to this at the end of the course….!

35

36

Are we ready to design sequential circuits and
finite state machines ?

•Is something missing ?

•When do states change in a machine ?

•Do we let states change at arbitrary times ?

•What do you think happens in a computer ?

36

19

37

Clocked Flip-Flops/Circuits
•Subsystem in a computer consists of a large number of
combinational and sequential devices

• Each sequential device is like latch which is in one of two states
• As machine executes its cycle, the states of all sequential devices

change with time
•To control large collection of devices in an orderly
(synchronized) fashion, machine maintains a clock

• Requires all devices to change their states at the same time
• Clock generates sequence of pulses

• Much easier to design, debug, implement, and test

•How do we change latches so that they allow change in state
synchronized with the clock ?
•Sequential logic circuits require a means by which events can
be sequenced…..clock!

37

38

Introducing - The Clock!
•A clock controls when stored values are “updated”

• Electrical waveform – sends pulses through a circuit
• Changes values at a periodic rate

• The clock will act as the ‘heartbeat’ of our system
• The number of cycles per second is the clock frequency measured in

cycles per second or Hertz (Hz)
• The clock period refers to the duration of one clock cycle. The period

and frequency are inversely related.
§ Typical clock frequency: 2.5GHz = 2.5 x109 Hz
§ So corresponding clock period = 1/(2.5 x 109) = .4x10-9 sec

– That would be: 0.4 nanoseconds

“1”

“0”

time®One
Cycle

38

20

39

Attaching Clock to D-Latch
• Attach CLOCK to the WE on D-Latch
• We create “windows” of time that we can store data into latch

§ When the CLOCK is “HIGH” – D-latch is open
§ When the CLOCK is “LOW” – D-latch is closed

• D=Q while CLOCK is High
• We have to prepare what we wish to store, right before latch closes

CLOCK

D

Q

open openclosed

time®

D

WE clock

Oops…changes in input while clock=High cascade to output Q
- Q can change multiple times during clock cycle: not synchronized with clock

39

40

Why Clocked D-latches may not work
• Sequential circuit: the next state (and output) depend on
values of current state and input
•If input to D-latch changes while clock is High, then next state
(and output) can change during this single clock cycle

• state we want to store as next state could be overwritten
• we want to force changes (in state and input) to be
synchronized to the clock

• allow input/states to be read and output/next state to change ONCE
per clock cycle

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

40

21

41

Enter the Flip Flop….
• Flip flops are edge triggered devices

• They capture the input and change state when the clock changes
level
§ Positive edge triggered: when clock goes from 0 to 1
§ Negative edge triggered: when clock goes from 1 to 0

•We refer to the D flip flop as an edge-triggered device.
• D=Q ONLY when WE changes from 0 to 1

•This differs from D latch, which is: level-triggered
• D=Q anytime WE equals 1

41

42

D Flip-Flop vs. D-Latch – Timing Diagrams

D

Q

WE

Timing Diagram for DFF:

D

Q

WE

Timing Diagram for D-Latch:
Observe difference in how output Q
synchronizes with clock edge in DFF

42

22

43

D Flip-Flop
•D Flip-Flop is a pair of D latches

• Isolates next state from current state
• Output of DFF read when clock is high, Next state stored end of cycle

•Two phases:
• Clock = 1: WE1 =0: Latch #1 closed, WE2 =1: Latch #2 open
• Clock = 0: WE1 =1: Latch #1 open, WE2 =0: Latch #2 closed

D

Clock

Q
Latch #1

Latch #2

Qinter

WE1 WE2

43

44

D Flip-Flop timing Diagram

D

Qinter

Q

D

Clock

Q
Latch #1

Latch #2

Qinter

Clock L1-closed
L2-open

L1-open
L2-closed

L1-closed
L2-open

L1-open
L2-closed

WE1 WE2

44

23

45

D Flip-Flop
• We can think of the D Flip-Flop as a 1 bit storage container with an

input, D, and an output, Q and connected to a clock input
• A set of D flip-flops can be grouped together with common Clock and

WE inputs to form a register -- replace D-latch with D flip flop

D Q

Clock

Flip-Flop

1
0

1
0Truth table for DFF:

X = don’t care (i.e, 0 or 1)

45

46

Our basic “Storage” Devices

D QD

WE

DFF QD

CLK

RS
Q

S Q’
R

RS Latch – Stores 1 Bit, Level-Triggered
-1 “forbidden” input: S=0, R=0
-Holds Data when RS=11

D-Latch – Stores 1 Bit, Level-Triggered
-No “forbidden” inputs (fixes RS Latch)
-D=Q when WE=1
-Holds Data when WE=0

D-Flip-Flop – Stores 1 Bit, Edge-Triggered
-No “forbidden” inputs
-D=Q when WE (CLK) transitions from 0 to 1
-Holds Data for WE=1 or WE=0

-Except when WE transitions from 0 to 1

46

24

47

One more tweak…
D Flip-Flop with Additional Write Enable

• From previous slides, we attached clock to WE of the D-flip-flop
• Now, we add another WE line to the flip flop

§ Just holds onto data already stored in DFF
• Give it the ability to “ignore” the clock!

D Q

Clock

Flip-Flop

WE

w/WE

0
1 D Q

Clock

DFF

WE

47

48

Schematic of a Sequential Circuit

Combinational
Logic Circuit

State variables
(memory)

D Flipflops

Inputs
Outputs

Next State Values

Current State Values

Clock

48

25

49

Next: Design methodology for sequential logic
circuits .. Finite State Machines

•We have storage devices and method for synchronization
• Flip flops and Clock

•How do we design a clocked circuit to solve our problems ?
• Example: Is there a methodology behind designing a circuit to

implement a Counter ?
• Provide procedure for designing Sequential circuits (to
implement Finite State Machine)

• Storage Device to store state: D flip flop
• Logic to implement next state: combinational gates/devices
• How to derive the logic: truth tables

49

50

States in a FSM
• The concept of state

• the state of a system is a “snapshot” of all relevant elements at a
moment in time.

• a given system will often have only a finite number of possible states.
• For many systems, we can define the rule which determines under

what conditions a system can move from one state to another.
§ So when do they change states ?

– Synchronized to clock (edge triggered)

• Determining the ‘states’
• Problem statement determines what information needs to be stored

(state is a summary)
• How many states does the machine need ?

50

26

51

Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be

stored. Call them SN-1 SN-2 …S1S0

• State diagram will show transitions from state to state based on
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and

the output at each state -- common notation is S’ but confusion
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

51

52

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all
possible “states” for the
machine

Arrows show movement from
one state to the next while switch
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

52

27

53

Labelling States in Binary

000

001

010

011

100

101

110

111

Reset

We have 8 states, therefore we
need log2 8 =3 bits to encode
states in binary:

from 000 to 111

Each bit is called a state variable
& Stored in one D flip flop

we need 3 Flip flops to
store 3 bits S2 S1 S0

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

53

54

Storage

•Each D flip flop stores one state bit.
•The number of storage elements (flip-flops) needed is
determined by the number of states
(and the representation of each state).

• Each bit can be 0 or 1 = 2 states
• N bits can represent 2N states

•Example: If FSM has 12 states, then circuit needs log2 12 = 4
storage elements (i.e., flip flops).

• Fewer the states, less hardware needed
§ Concept of Minimization of States for a given FSM…

– …in Foundations (where else!!)

54

28

55

Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be

stored. Call them SN-1 SN-2 …S1S0

• State diagram will show transitions from state to state based on
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state S*

and the output at each state (common notation is S’ but confusion
with complement operator, so let’s use S*)

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

55

56

Truth Table Representation of Counter

Input Present State Next State
On S2

(t)
S1
(t)

S0
(t)

S2*
(t+1)

S1*
(t+1)

S0*
(t+1)

1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 0 1
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 0 0 0
0 X X X 0 0 0

56

29

57

Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be

stored. Call them SN-1 SN-2 …S1S0

• State diagram will show transitions from state to state based on
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and

the output at each state -- common notation is S’ but confusion
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

This part is no different from combinational circuit design!

57

58

Boolean functions for values of next state
•For each state variable, derive function that determines next
state for that variable:
•Note: S2 (t+1) – value of state variable at time (t+1) is denoted
as S2*
•Current states: S2 S1 S0

•Derivation here is only for case when On=1

•S2* = On.(S2’ S1S0 + S2S1’S0’ + S2S1’S0 + S2S1S0’)

•S1* = On.(S2’ S1’S0 + S2’S1S0’ + S2S1’S0 + S2S1S0’)

•S0* = On.(S2’ S1’S0’ + S2’S1S0’ + S2S1’S0’ + S2S1S0’)

58

30

59

Circuit

On

D
Flip flop

D
Flip flop

S2

S1 S1*

S2*

S0*

S2*

S1*

Combinational circuit

Storage
elements

D
Flip flop S0*

Circuit
for S2*

Circuit
for S1*

Circuit
for S0*

59

60

Summary: Designing and implementing a FSM
1. First draw the state diagram

• Encode each state in binary using N bits
• These N bits correspond to N “state variables” that need to be

stored. Call them SN-1 SN-2 …S1S0

• State diagram will show transitions from state to state based on
value of inputs

2. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• “outputs” are the values of the state variables in the next state and

the output at each state -- common notation is S’ but confusion
with complement operator, so let’s use S*

3. From truth table, derive combinational circuit (boolean
function) for each of the next state values
• State variables are stored in your N storage elements

60

31

61

Example 2: Blinking Traffic Sign: Start all lights
off – lights bulbs 1,2,3,4,5 off
•(from textbook) Design control circuitry for a blinking traffic
sign (to show “move right” message)

DANGER
MOVE RIGHT

1

2

3

4

5
Start
Lights

61

62

Step2: switch ‘on’ 2 lights – bulbs 1,2

DANGER
MOVE RIGHT

1

2

3

4

5

62

32

63

Step 3: Switch ‘on’ 4 lights – bulbs 1,2,3,4

DANGER
MOVE RIGHT

1

2

3

4

5

63

64

Step 4: switch ‘on’ 5 lights – 1,2,3,4,5

DANGER
MOVE RIGHT

1

2

3

4

5

64

33

65

Step 5- switch all ‘off’ – lights bulbs 1,2,3,4,5 off
And repeat the cycle

DANGER
MOVE RIGHT

1

2

3

4

5

65

66

Example: Traffic Sign
•A blinking traffic sign: How many lights/lightbulbs = 5
•How many states ?
•4 states

• No lights on
• 1 & 2 on
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch is turned on)

•How many bits to represent the 4 states
•S1S0

• With S1S0 values: 00, 01, 10, 11
•How many ‘outputs’ (to control the 5 lights) = 5 ?
•If the sign is switched off then all lights turn off

66

34

67

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.
67

68

Outputs
•Note we really have 3 groups of lights to be controlled = 3
control lines X,Y,Z

• Group 1: Lights 1 and 2; controlled by Z
§ If Z=1 then Group 1 lights (1 and 2) are switched on

• Group 2: lights 3 & 4; controlled by Y
• Group 3: Light 5; controlled by X

•In this example, we associate each state with an output
• Depending on the current state, we switch on specific groups of lights

68

35

69

all on grp 1,2 on

all off grp 1 on

1

1

0

0

0

1

0,1

01

10

11

00

69

70

•When is group 1 on?
• in states 01, 10 and 11 - but only when the switch IN is on!

• Logic expressions for X,Y,Z
• Depends on S0 and S1 and Input is on

§ If Input is off then X,Y,Z are al 0

• can you come up with a logic expression for next state values
of S0 and S1?
• Depends on current values of S0 and S1 and Input is on

§ Input off then both bits are set to 0 since next state is 00

• Next state value of S0 denoted S’0 = 1 if current state is 00 or current
state 10 and In=1

•When do we switch to the next state?
• the two bits of S[1:0] are updated at every clock cycle
• we have to make sure that the new state does not propagate to the

combinational circuit input until the next clock cycle.

70

36

71

Traffic Sign Truth Tables

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0 S1’ S0’
0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.

71

72

Boolean functions for light control bits
• from truth table, consider all rows where outputs =1

• Z = ((NOT S1)S0 + S1 (NOT S0) + S1S0).In

•Y = (S1S0 + S1 (NOT S0)).In

•X = (S1S0).In

72

37

73

Traffic Sign Logic

D
flipflop

73

74

Exercise: Design a sequential circuit
• Counter that counts from 0 to 6

• Resets to 0 after 6
• Keeps going as long as “input” = 1
• Ignore this for now

• Finite state diagram
•Truth table
•Logic functions for next state

74

38

75

Summary of Digital Logic
•Combinational logic

• Basic gates
• Combinational devices

•Sequential logic
• Storage element…Flip flop
• Theory behind design of finite state machines

§ They act like controllers of a circuit
•Sequential logic devices

• Memory, ROM, RAM, Registers

So, what is the purpose of all this ?.........

75

76

The Agenda

•Take the elements that we have encountered so far
• Combinational Elements

§ Gates, Adders, Muxes, decoders
• Storage Elements

§ Flip flops, registers, memories

•And use them to build a circuit that can perform a sequence
of arithmetic operations.
• In essence, we will build a very simple CPU

76

39

77

From Logic to Processor Design

•Combinational Logic
• Decoders -- convert instructions into control signals
• Multiplexers -- select inputs and outputs
• ALU (Arithmetic and Logic Unit) -- operations on data

•Sequential Logic
• State machine -- coordinate control signals and data movement
• Registers and latches -- storage elements

77

78

Next: Putting it all together
• The goal:

• Turn a theoretical device - Turing’s Universal Computational Machine -
into an actual computer ...

• … interacting with data and instructions from the outside world, and
producing output data.

• Smart building blocks:
• We have at our disposal a powerful collection of combinational and

sequential logic devices.

• Now we need a master plan ...
• We need to start with defining the model of a computer architecture

§ Von Neuman model

78

