
1

CS 2461
Computer Architecture 1
i.e., Introduction to Computer
Systems

https://cs2461-2020.github.io/
Fall 2021
Instructor: Dr. Bhagi Narahari

1

2

What is CS 2461 about?!
• Look ‘under the hood’ to see how a computer works

§ Explore the interface between hardware and software
§ Understand the components in a processor
§ Bottom up approach: from transistors on up to algorithm design

o i.e., the hardware stack

• With this knowledge you can
§ Understand the link between hardware and software
§ Write better, more efficient software
§ Design better hardware

o Link between hardware and software
§ Appreciate the abstractions that are built on top of these foundations

2

https://cs2461-2020.github.io/

2

3

Pre-requisites
• Pre-requisites
§ CS 1112 – Data structures and algorithms
§ CS 1311 – Discrete Math 1

• Co-requisite: CS 2113
§ Knowledge of C programming language
§ I will be synchronizing with instructor

• Programming practice…system skills
§ Practice, practice,…and more practice

3

4

Course Objectives
• To understand the structure and operation of a modern

computer system from the ground up.
§ Understand basic hardware concepts and build simple circuits

o digital circuits -gates, bits, bytes, number representation

§ Understand the Von Neumann architecture/computing model
o structure and operation, (assembly language)

§ Basic “system” concepts
o runtime stack, simple I/O devices, Unix OS
o Software security Introduction – stack smashing attacks

• How high level languages are implemented on the machine
(using the C language)
§ How are C programs translated to assembly and implemented on a

machine
§ Proficiency in the C programming language

• Understand how software/program performance is linked to
program and machine properties

4

3

5

Two recurring themes in Computer Sci.
• Abstraction: Productivity Enhancer
§ You don’t need to worry about the details

o You can drive a car without knowing about the internal combustion
engine….until something goes wrong: where is that smoke coming
from !!

§ The notion that we can concentrate on one “level” of the big picture at
a time, with confidence that we can then connect with other levels.

§ Framing abstraction appropriately is a very important skill
o THIS is the whole point of mathematical modeling in Engineering/CS fields

• Hardware and Software
§ abstraction does not mean being clueless about HW or SW
§ In particular, hardware and software are inseparably connected,

especially at the level we will be studying
oEven if you specialize in one, you must understand the capabilities

of the other
5

6

What are Computers meant to do ?

• Solve problems that are described in English (or Greek
or French or Hindi or Chinese or ...) and use a box filled
with electrons and magnetism to accomplish the task.*
§ This is accomplished using a system of well defined (sometimes)

transformations that have been developed over the last 50+
years.

§ As a whole the process is complex, examined individually the
steps are simple and straightforward

• Definition from the textbook
• So how do you get the electrons to run around and do

our task ?

6

4

7

Two Big Ideas in Computing

• Universal Computational Devices
§ Turing’s Thesis: every computation can be performed by some “Turing

Machine” - a theoretical universal computational device
– You will see this in the Foundations course CS 3313

• Problem Transformation (Abstraction!)
§ The ultimate objective is to transform a problem expressed in natural

language into electrons running around a circuit (using a succession
of transformations)
oThat’s what Computer Science and Computer Engineering are all

about: a continuum that embraces software & hardware.
oNote the role of compilers/translators

7

8

Big Idea #1: Universal Computing Device
• All computers, given enough time and memory, are capable

of computing exactly the same things
§ Smartphone, laptop, supercomputer

o Limited only by time and memory (and energy)

• Anything that can be computed, can be computed by a
computer
§ If you can describe something in terms of computation, it can be done

by a computer

• Formal (mathematical) model of computing = Turing
Machine

8

5

9

Turing Machine
• Mathematical model of a device that can perform any

computation – Alan Turing (1937)
§ Ability to read/write symbols on an infinite ‘tape’
§ State transitions: based on current state and input symbol

• Every computation can be performed by some Turing
machine (Turing’s thesis)

9

10

Universal Turing Machines
• A machine that can implement all Turing machines

§ This is also a Turing machine !
§ Inputs: data, plus a description of computation (other TMs)

• U is programmable – so is a computer !
§ Instructions are part of the input data
§ A computer can emulate a universal Turing machine

10

6

11

Turing machines, Computers,….so which one do
we use ?

• If all of them can do your work which one do you choose
and what is the difference ?

• Performance
§ Speed/Latency (how long to solve your single program)
§ Throughput (how many tasks at a time can the server handle)

• Cost
• Energy/Power

§ Particularly important in smartphones, embedded systems,..
o Because energy source is a battery

11

12

Big Idea #2: Transformation between layers
(Abstraction!): Putting the electrons to work!

• Problems

• Algorithms
• Program

• Instruction Set Architecture

• Microarchitecture
• Circuits

• Devices

12

7

© McGraw Hill

How do we solve a problem using a computer?

A systematic sequence of transformations between
abstraction layers.

Problem

Algorithm

Program

Instr Set
Architecture

Software Design: choose algorithms
and data structures. Bubble Sort

Programming: use language to express
design and implement algorithm. C lang.

Compiling/Interpreting: convert
language to machine instructions. Use
gcc compiler (to compile to ARM ISA)

13

Example: Problem = Sort a set of numbers

13

© McGraw Hill

…and even more layers…

Processor Design: choose structures
to implement ISA. Choose ARM ISA

Instr Set
Architecture

Microarch

Circuits

Devices

Logic/Circuit Design: gates and
circuits to implement components of
AMD ARM processor

Process Engineering & Fabrication:
develop and manufacture
transistors, wires, etc.

14

14

8

16

Recap: Our Computing Technology Stack &
transformation between layers

• The problem..in words
• The algorithm..still in words but

formalized
• The program…captures algorithm in

specific HLL syntax (C, Java,..)
• The ISA…an instruction set

architecture that specifies what
operations processor can perform

• The micro-architecture…potentially
many ways to implement processor
with given ISA

• The logic circuits…implement various
components of microarchitecture as
assemblies of logic gates

• The devices…logic gates built from
transistors fabricated using
technologies (CMOS, GaAs,..)

Problem

Algorithm

Program

ISA/Machine Arch.

Devices

Micro-architecture

Logic Circuits

16

17

Focus of this course: The Machine/Hardware
Level

• Machine Architecture
§ This is the formal specification of all the functions a particular machine

can carry out, known as the Instruction Set Architecture (ISA).
oWe will study the ISA, and Assembly Language programming of a

simple computer LC3 – why select a simple “unrealistic” computer?

• Microarchitecture
§ The implementation of the ISA in a specific CPU - i.e. the way in which

the specifications of the ISA are actually carried out.
oWe give an overview of the microarchitecture; CS 3462 covers this

topic

This is going to be ‘all new’ material for most of you…

17

9

18

The Machine Level –contd.

• Logic Circuits
§ Each functional component of the microarchitecture is built up of

circuits that make “decisions” based on simple rules
oWe will study the basic building blocks of logic circuits
oYou will learn to implement hardware logic circuits in the labs

• Devices
§ Finally, each logic circuit is actually built of electronic devices such as

CMOS or NMOS or GaAs (etc.) transistors.
oDevice electronics – not in this course

18

19

Approach
• Bottom-up: from bits to C

§ Establish link between hardware and software
§ Learn C in context of hardware

o Used for systems programming & misused by many!
o Learn what actually happens when your programs run
o If you understand the hardware the language loses a lot of its

mystery!
• Why C: the ultimate high-level, low-level language

§ High level enough that you can write large scale programs in It
§ Low level enough that you can reach down and twiddle the bits.

19

10

20

Bottom up Approach….Power of Abstraction

Program (C)

Devices (transistors)

Circuits (Logic gates)

Microarchitecture (datapath)

ISA (LC3)

Build logic gates
using transistors

Build datapath
using circuits/gates

Build datapath for LC3 ISA

Compile to ISA/LC3 instructions

Power of Abstraction !!

Our starting point is “how to represent data”

20

21

How does this course “interface” with other
courses ?
• CS2113 Software Engineering: learn C, learn software

development, testing, debugging,…
• CS 3410 Systems Programming:

§ HW: use a CPU board and sensors to deploy a system to solve a
problem (parking assist in a car)

§ SW: systems programming (in C) to process data gathered from
sensors

• CS 3411 Operating systems:
§ How does software ‘manage’ the HW resources

o CS2461 barely touches the tip of the iceberg when it comes to
systems concepts!

§ A lot more programming in C
• CS 3313 Foundations:

§ Mathematical foundations of computing devices

21

11

22

Your Initial To-do List
1. Get your “reading resources” - textbook
2. Go to the course web page.

§ Lecture videos and notes will be posted
3. Prepare for class:
§ Read notes/slides, textbook and watch any videos that are posted

for the next class/topic.
o There are going to be in-class exercises during class!!

4. Submit the ”Feedback Questions” survey by 1pm before
each class

22

