Logic Design (Part 1) Transistors \& Gates (Chapter 3)

Based on slides © McGraw-Hill
Additional material © 2010 Taylor
Additional material © 2013 Farmer
Additional material © 2020 Narahari

1

Recap...where are we:

- Data representation
- 2C representation of integers
- Convert decimal to 2C and 2C to decimal
- 2 C rep of decimal N : if positive, same as unsigned if negative, flip bits and add
- ASCII
- Arithmetic operations
- Boolean logic:
- Truth tables
- Logical connectives: AND, OR, NOT, XOR,
- Derive values of boolean expression by filling truth table
- How is data represented in C

Agenda next 3 weeks: Inside a microprocessor

Recall: what are Computers meant to do ?

- We will be solving problems that are describable in English (or Greek or French or Hindi or Chinese or ...) and using a box filled with electrons and magnetism to accomplish the task.
- This is accomplished using a system of well defined (sometimes) transformations that have been developed over the last 50+ years.
- At the lowest level, computers use 0's and 1's (binary) to represent data
- We first take a quick look at technology that gets electrons to run around

Problem Transformation- levels of abstraction

Recall:
 Why use Binary and How to represent data in a computer?

- At the lowest level, a computer has electronic "plumbing"
- Operates by controlling the flow of electrons
- Electrons flowing on the wire when voltage exists
-Easy to recognize two conditions: 0 or 1

1. presence of a voltage - call this state " 1 "
2. absence of a voltage - call this state " 0 "

More complex to base state on value of voltage, but can be done
-Think of the two states 0,1 as states of a switch

- Change from 0 to 1 means throwing switch to turn on the light
- Presence of voltage on the wire means value of bit $=1$ else 0

Physics review from Labs

- Electricity corresponds to the flow of negatively charged particles called electrons.
- Particles of opposite sign, (+eve and -ven), attract each other
- Particles of the same sign repel each other.
- A voltage difference between 2 points captures the amount of work it would take to move charge from one point to another
- analogous to an elevation difference in a waterfall
- Current is the flow of electrons
- Ohm's Law V = IR

7

Voltage/Current and Electric Field

E-field produces "potential difference"
Aka: motivation for charge to flow

Direction of current

Battery provide voltage Aka: potential difference

Direction of current
Ohm's Law: $V=I R$ 8

Simple Switch Circuit

The light bulb has a resistance value

-Switch open:

- No current through circuit - Resistance=infinity
- Light is off
- $\mathrm{V}_{\text {out }}$ is +2.9 V

Switch closed:

- Short circuit across switch
- Current flows
- Light is on
- $\mathrm{V}_{\text {out }}$ is 0 V

Key Takeaway:
Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage, $0 / 1$!!

9

Switches to logic

- A switch inherently represents two states, on/off

- When put in a circuit, can start/stop current flow

Switches to logic

- Putting multiple switches together, and we get basic logic structures

Switches to logic

- Putting multiple switches together, and we get basic logic structures

Both switches must be "on" for bulb to light up
(AND)

Only 1 switch Must be "on" for Bulb to light up (OR)

Digital Circuits:

It's all about switching...

- Tubes
- Transistors
- CMOS FET

Computers use transistors as switches to manipulate bits
Before transistors: tubes, electro-mechanical relays (pre 1950s)
Mechanical adders (punch cards, gears) as far back as mid1600s

Vacuum Tubes

- Also known as valves because they control the flow of electrons
- Flow from Cathode to Anode
- First computer built using vacuum tubes

Historical Perspective

- ENIAC built in World War II the first general purpose computer
- Used for computing artillery firing tables
- 80 feet long by 8.5 feet high and several feet wide
- Each of the twenty 10 digit registers was 2 feet long
- Used 19,000 vacuum tubes
- Rerformed 1900 additions per second

Historical Fact: Who are the "top secret rosies"?
15

Transistors: Building block of computers

- Also viewed in digital circuits as a "switch"
- Transistors used in analog circuits: Stereos, Image proc., etc.
- Brought about a big change
- Size, Speed, Precision
- Moore's law: they get smaller and faster
- Can put more and more onto a single chip
- Microprocessors contain millions of transistors
- Intel 80286 (1982): 200,000
- Intel i860 (1989): 1 million
- Intel Pentium 4 (2000): 48 million
- Intel Core Duo 2 (2006): 291 million
- Intel 8-core Xeon Nehalem-EX (2010): 2.3 billion
- Intrl Core 9 (2019): >5 billion
- GPUs: nVIDIA GA100 (2020): 54 billion
- Some flash memory chips contain over trillion

Basics of Digital Circuit Design

- How to build a switch ?
- Transistors
- How to build basic logic functions - gates using transistors ?
- Build simple gates (AND, NOT, OR, ...) using transistors
- How to build more complex combinational logic using gates
- Build Adders, multiplexer, decoder, storage devices using simple gates (AND,NOT, OR..)
- Build a whole computer using complex logic devices
- Assemble all the pieces together into an 'orchestra' - this is the CPU!
- Important: power of abstraction (and layers)
- Once you know how to build a gate using transistors, you don't have to think transistors any more!
- Once you have a collection of gates on a single chip, you don't have to think about individual gates.
- etc. etc.

What is a transistor?

- A transistor is an electrical device that allows us to control the flow of current in a circuit
- A transistor can act like an electronic "switch" in a circuit
- A transistor can also function as an "amplifier" of voltage or current
- Over the decades, engineers have developed several electronic "switches" in circuits:
- mechanical relays, vacuum tubes
- diodes, transistors
- MEMS devices, photonic, biological
- Switch-like behavior is important, because it can give rise to logic
- In a CPU, we use transistors as switches, to implement logic gates
- Voltage controlled switch
- the switch is closed or open depending on input voltage

Transistor as electronic switch

- In the previous example with switches, someone must manually "flip" the switches to control the "input" to our gates
- In a computer we need to generate signal to flip the switch
- Transistor offers us this capability
- We use voltage, to remotely flip the switch
- A transistor has 3 terminals:

This terminal is called

This "terminal" controls
the other two
(using voltage)
Terminal is called
"the gate"
"the drain"
his terminal is called
"the source"

How does a transistor work - Semiconductor basics

- Most materials are either insulators or conductors
- They don't "change" their properties
- Semiconductors: between insulator and conductor
- Semiconductors: Based on voltage applied to "gate" it is either insulator or a conductor
- Electric field creates a circuit
- Changes the device from an insulator to a conductor
- Overview: two types of semiconductor materials
- N-type: extra electrons can be used to carry a current
- P-type: extra 'holes' into which electrons can flow
- how does it work ?? For more details read Appendix slides (at the end)

the MOSFET (your $1^{\text {st }}$ Transistor!)

- MOSFET : Metal Oxide Semiconductor Field Effect Transistor
- Picture shows a cross section of such a device.
- Materials: metal, oxide, semiconductor

MOSFET (Metal Oxide SemiConductor)

Notice it has 3 terminals:
Source, Drain, Gate
Voltage applied to Gate determines switch behavior

How we want it to work...

- Goal: Pass current through this device (from drain to source)
- BUT we want to control that current (using the gate terminal)
- If GATE is ON

How we want it to work...

- Goal: Pass current through this device (from drain to source)
- BUT we want to control that current (using the gate terminal)
- If GATE is OFF
$\bigcirc \bigodot \dot{¢}^{\ominus}$ electrons cannot pass through channel

Two types of MOSFETs: nMOSFET and pMOSFET

- nMOSFET (nMOS): channel carries negative charges (electrons)
- GATE MUST BE (+) to be ON
- pMOSFET (pMOS): channel carries positive charges (holes)
- GATE MUST BE (-) to be ON

n-type

p-type

Abstraction: Simplified view of p-type MOS Transistor

-p-type

- when Gate has positive voltage, open circuit between \#1 and \#2 (switch open)
- when Gate has zero voltage, short circuit between \#1 and \#2 (switch closed)

Important: For p-type, Terminal \#1
must be connected to Voltage Source.

Abstraction: Simplified view of n-type MOS Transistor

-n-type complementary to p-type

- when Gate has positive voltage, short circuit between \#1 and \#2 (switch closed)
- when Gate has zero voltage, open circuit between \#1 and \#2 (switch open)

mportant: For n-type, Terminal \#2 nust be connected to Ground (0V).

27

To turn on the light What voltage do we apply here?
(N type)

To turn the lightbulb off: Input A =0

To turn the lightbulb ON : Input to switch =1

Question: Where is the signal $\mathrm{A}=1$ coming from ?generated by another circuit!!!

Light bulbs and computer hardware -what the

 \&@?\#\&\#\&!- Let's look back at what we've learnt
- Numbers can be represented as 0s and 1s
- 1 is presence of voltage on line, 0 is no voltage on line
- Arithmetic operations on these numbers
- Logical operations on these numbers
- Starting point: how to implement the basic logic operators using transistors/switches?
- NOT, AND, OR
- Next: how to implement arithmetic operations and other functions
- Combinational circuits; example: adder

Logical Operations

- NOT, AND, OR, NAND, NOR, XOR
- These are binary functions
- Input is binary, output is binary
- Boolean function - operates on boolean variables
- Boolean function can be expressed using truth table
- Eg: addition can be represented as a boolean function
- Recall from Discrete 1 - CS 1311: can implement any boolean function using AND, OR, NOT, etc.
- In fact, can implement any bool function using just NAND
- Start by building these logical operator "gates" using transistors

Ok....start building logic gates

- Use Complementary MOS (CMOS) circuits
- Using N type and P type transistors
- Use switch behavior to implement logic functions/operators
- 'signal' is a 1 or 0 and nothing else
- Output value will be voltage measured at some point in the "circuit"
- Need to determine where to designate the output point (i.e., where to measure)
- This output point must (at all times) have a path (connection) to Voltage source (1) or to ground (0)
- The path is selected based on the value to transistor gates
- Inputs will be applied to the transistor gate
- A line in the circuit always tied to 1 (voltage source) and one always tied to 0 (ground)
- Start by looking at the truth table for the logic function

So now what? How to go from "switch" to logic?

- Our first logic device will be an inverter: the NOT gate

- Logical Behavior: "inverts" the incoming signal:
- Input: LOW-> output: HIGH
- Input: HIGH->output: LOW

How do we configure transistors to make

 inverter?

We take advantage of opposing nature! -If pMOS turns on when GATE=0 (Ground) and if nMOS turns on when GATE=1 (Voltage) -then if we put them together \& connect their gates, we get inverting behavior!

This configuration is called: CMOS

We have "jumped up" 1 level of abstraction
--From transistors to "gate"
--Technology inside the gate (CMOS here) isn't as crucial as its behavior --could be: transistors, vacuum tubes, biological device, etc.

Things to notice about a CMOS Circuit

- Uses both n-type and p-type MOS transistors
- p-type
- Attached to POWER (high voltage)
- Pulls output voltage UP when input is zero
- Call PMOS devices "pull up" devices
- n-type
- Attached to GROUND (low voltage)
- Pulls output voltage DOWN when input is one
- Call NMOS devices "pull down" devices
- For all inputs, this configuration makes certain that output
- connected to GROUND or to POWER, but not both! (why?)

41

Example

Note: Parallel structure on top, serial on bottom.

A	B	C
0	0	$?$
0	1	1
1	0	$?$
1	1	$?$

NAND Gate (AND-NOT)

Truth Table

A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

Note: Parallel structure on top, serial on bottom.

The "Logic" Behind CMOS Gate Implementation

Transistors in series implement "AND"

- Current flows only if both are "ON"

Transistors in parallel implement "OR"

- Current flows if either is "ON"

CMOS is naturally inverting
Result: n-network implements function
NAND example

- n-network transistors in series gives AND
- Natural inversion gives NAND

		B
0	0	1
0	1	1
1	0	1
1	1	0

The "Logic" Behind CMOS Gate Implementation

P-network is complement of n-network

- Series n-network \rightarrow parallel p-network
- Parallel n-network \rightarrow series p-network

NAND example

- p-network transistors in parallel
- Designing in CMOS:
- We always design the n-network (aka - the pull-down network) first
- Then, complement it and you've figured out the p-network (aka - the pull-up network)

AND Gate: Combining two circuits- NAND, NOT

Basic Logic Gates

- From Now On... Gates
- Covered transistors mostly so that you know they exist
- Note: "Logic Gate" not related to "Gate" of transistors
- Logic gates ~ Propositional logic operators
- Propositional logic formula = Boolean logic circuit !
- Will study implementation in terms of gates
- Circuits that implement Boolean functions

- More complicated gates from transistors possible
- XOR, Multiple-input AND-OR-Invert (AOI) gates

Truth Table for common 2 input gates

A	B	AND	OR	NAND	NOR	XOR
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

Another "gate": Tri-State Buffer

- Acts as a basic switch - a valve that is open or closed
- If $\mathrm{C}=0$ then no connection from A to B
- If $\mathrm{C}=1$ then A connected to B
- Why use this ?
- Access to Bus - only signals with "valve closed" are sent to bus
- Boost current to circuit - as resistance builds up in long paths, the signal gets weaker

Example: Your first combinational circuit

- Combinational logic circuits ~ propositional logic statements
- Use gates to implement the logic operators ('functions')
- No necessity to show the circuit using transistors since each gate corresponds to an implementation using transistors
- Output = ((NOT A) AND B) OR C
- Need one AND gate and one OR gate (and one NOT gate/invertor)

Visual Shorthand for Multi-bit Gates

- Use a cross-hatch mark to group wires
- Example: calculate the AND of a pair of 4-bit numbers
- A_{3} is "high-order" or "most-significant" bit
- If " A " is 1000 , then $A_{3}=1, A_{2}=0, A_{1}=0, A_{0}=0$

Shorthand for Inverting Signals

- Invert a signal by adding either
- a O before/after a gate
- a "bar" over letter

Building Combinational logic circuits

- Integrated circuits (chips) package multiple gates into a single chip
- Using a single gate requires connecting inputs to the appropriate pins on the chip and taking the output from a specific pin
- A "datasheet" for each chip specifies how the pins are connected
- Labs this week: Using 7400 series chips to design logic circuits

Reading

- Chapter 3
- Lecture notes posted on webpage
- and Notes linked from webpage
- Start using Cedar Logic (Windows) or Logisim (Mac)
- Go over the Set1.cdl examples
- Download and save the file, open in Cedar Logic/Logisim
- Review boolean algebra concepts from CS1311
- Summary notes on Bool.Alg. Posted on my lectures webpage

Appendix: Additional Reading/Slides

More Physics: Conductors, Insulators, Semiconductors

- Materials like metals are termed conductors because they allow the free flow of electrons
- Materials like rubber are termed insulators because they impede flow of electrons
- Resistors are devices that will conduct some current if you encourage the electrons with a potential difference
- Semiconductors are poor conductors and poor insulators, hence "semi." They can be used for either or both properties

How does a transistor work - Semiconductor basics

- Most materials are either insulators or conductors
- They don't "change" their properties
- Semiconductors: between insulator and conductor
- Semiconductors: Based on voltage applied to "gate" it is either insulator or a conductor
- Electric field creates a circuit
- Changes the device from an insulator to a conductor
- how does it work ??

How does a transistor work?

- Begin at the beginning (what is it made of ?)
- Currently transistors are etched on Silicon
- Atomic symbol: Si - atomic number 14
- In its crystalline state, silicon atoms form covalent bonds neighbors using their 4 outer electrons
- At room temperature, Silicon is a semiconductor

Doping - not what you think

- We can improve the conduction of Silicon by doping it with other elements.
- N -type regions are formed by adding small amounts of elements that have more than 4 electrons in their outer shell and, these extra electrons can serve as charge carriers.
- P-type materials are formed by adding elements that have 3 electrons in their outer valence shell.These atoms create spaces in the lattice of covalent bonds into which electrons can flow.

59

P-type doping

- P-type materials are formed by adding elements that have 3 electrons in their outer valence shell.
- These atoms create spaces in the lattice of covalent bonds into which electrons can flow.
- P-type dopants : boron (B), gallium (Ga), indium (In)

Bottom Line

- N-type materials are good semiconductors because they have extra electrons which are negatively charged and can be used to carry a current.
- P-type materials are good semiconductors because they have extra spaces into which electrons can move. These 'holes' can be thought of as positive charge carriers.
- Now we are ready to describe our building block: MOSFET transistor

A Diode (a pn-junction) - recall LED from lab

- A union of P-type and N-type materials
- Functions as a one-way "valve" in an electric circuit
- Only allows current to flow in one direction

Depletion region

- Depletion region is an E-field that impedes the flow of current

A Diode (a pn-junction)

- Forward bias:
- Depletion region gets smaller
- Allows current to flow from + to -
- Allows flow of electrons through junction

- Reverse bias (reverse the battery):

A diode is

- Depletion region gets bigger
- impedes flow of current from + to -
- Impedes flow of electrons through junction

Like a 1-way valve Only lets current In 1 direction in a circuit

63

the MOSFET (your $1^{\text {st }}$ Transistor!)

- MOSFET : Metal Oxide Semiconductor Field Effect Transistor
- Picture shows a cross section of such a device.
- Notice it has 4 electrical terminals: Source/Drain/Gate/Body

MOS FET (Metal Oxide SemiConductor)

How we want it to work...

- Goal: Pass current through this device (from drain to source)
- BUT we want to control that current (using the gate terminal)
- If GATE is ON

Body

How we want it to work...

- Goal: Pass current through this device (from drain to source)
- BUT we want to control that current (using the gate terminal)
- If GATE is OFF
$\bigodot \dot{\rho}_{-}^{\text {electrons cannot pass through channel }}$

How we achieve this behavior...

- At "rest" we have (closed state)
- 2 n-type spots (source/drain)
- 1 p-type spot (channel region)
- 2 back-to-back diodes!
- Halts flow of electrons through channel (channel doesn't exist!)

How we achieve this behavior...

- If we wish to turn device on:
- We apply a "positive" voltage to GATE with respect to BODY
- This positive voltage "repels" holes from under the gate
- "depletes" the future channel reaion of all its holes

How we achieve this behavior...

- If we go further:
- Apply a "very positive" voltage to the gate
- Begins to attract electrons (from source \& drain)
- The channel region has been "inverted"
- Connects (electrically) source and drain, so current can flow!

Two types of MOSFETs: nMOSFET and pMOSFET

- nMOSFET (nMOS): channel carries negative charges (electrons)
- pMOSFET (pMOS): channel carries positive charges (holes)

Two types of MOSFETs: nMOSFET and pMOSFET

- nMOSFET (nMOS): channel carries negative charges (electrons) - GATE MUST BE (+) to be ON
- pMOSFET (pMOS): channel carries positive charges (holes)
- GATE MUST BE (-) to be ON

nMOSFET

pMOSFET

Simplified view: p-type MOS Transistor

-p-type

- when Gate has positive voltage, open circuit between \#1 and \#2 (switch open)
- when Gate has zero voltage, short circuit between \#1 and \#2 (switch closed)

Terminal \#1 must be
 connected to +2.9 V .

Simplified view: n-type MOS Transistor

-n-type complementary to p-type

- when Gate has positive voltage, short circuit between \#1 and \#2 (switch closed)
- when Gate has zero voltage, open circuit between \#1 and \#2 (switch open)

Terminal \#2 must be
 connected to GND (0V).

3-D View of CMOS Inverter in Silicon

3-D of larger CMOS circuits

This is an SEM photo shows all the metal Interconnections On an IC
$\mathrm{pMOS} / \mathrm{nMOS}$ are at the very bottom

Some observations about CMOS - why does your laptop get hot?

- Note that when the circuit is fully ON or fully OFF there is no path from the high voltage to the low voltage so no current flows
- However, when the output is in the process of switching from one logic level to another, there can be overlap of the two switches being on
- this causes a momentary short
- (current goes from pwr-to-gnd)
- Longer the short, more current you burn (more power wasted)!
- When current flows, device gets hot
- The faster you switch the circuit, the more current flows, the more heat is generated, the hotter your laptop gets.
- This has proven to be an important barrier to speeding up CMOS circuitry
- led to wide use of Multi-Core processors.

Speed of MOSFET

- Dependent on many factors, 1 crucial factor: Length of Channel
- Why? Electron takes less time to travel across smaller distance!
- Currently, 11 nm in length!
- Smaller the length, faster the 'speed'

Gate Delays How fast is your computer

- With any logic circuit there will be a short delay between the time you change one of the inputs and the time the output settles to its final value.
- This time is referred to as the gate delay.
- For modern circuitry, these gate delays are on the order of nano seconds (10^{-9} seconds) or pico seconds (10^{-12} seconds) .
- Nonetheless, these delays ultimately limit the rate at which you can compute - limiting the number of operations you can perform per second.

Inverter Logic Gate

The "Logic" Behind CMOS Gate Implementation

Transistors in series implement "AND"

- Current flows only if both are "ON"

Transistors in parallel implement "OR"

- Current flows if either is "ON"

CMOS is naturally inverting
Result: n-network implements function
NAND example

- n-network transistors in series gives AND
- Natural inversion gives NAND

The "Logic" Behind CMOS Gate Implementation

P-network is complement of n-network

- Series n-network \rightarrow parallel p-network
- Parallel n-network \rightarrow series p-network

NAND example

- p-network transistors in parallel
- Designing in CMOS:
- We always design the n-network (aka - the pull-down network) first
- Then, complement it and you've figured out the p-network (aka - the pull-up network)

\mathbf{A}	B	C
0	0	1
0	1	1
1	0	1
1	1	0

More than 2 Inputs? Arbitrary Functions?

- AND/OR can take any number of inputs
- AND = 1 if all inputs are 1
- OR = 1 if any input is 1 (0 if all inputs are 0)
- Implementation
- Multiple two-input gates or single CMOS circuit

- Can implement arbitrary boolean functions as a gate
- More complex n - and p - networks

Gate Delays

- Which is the better implementation of 4-input AND?
- One on the left
- Why? It's faster, 2 "gate delays" instead of 3
- Gate delays: longest path (in gates) through a circuit
- Grossly over-simplified, ignores gate differences, wires
- Good enough for our purposes

